Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 1037161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438724

RESUMO

Background: Inadequate dietary zinc (Zn) supplies and Zn deficiency (ZnD) are prevalent in Ethiopia, where cereals are major dietary sources, yet low in bioavailable Zn. Zinc agronomic biofortification (ZAB) of staple crops through application of Zn fertilizers may contribute to alleviating ZnD. However, large-scale promotion and adoption of ZAB requires evidence of the feasibility and public health benefits. This paper aimed to quantify the potential cost-effectiveness of ZAB of staple crops for alleviating ZnD in Ethiopia. Methods: Current burden of ZnD among children in Ethiopia was quantified using a disability-adjusted life years (DALYs) framework. Evidence on baseline dietary Zn intake, cereal consumption, and fertilizer response ratio was compiled from existing literature and secondary data sources. Reduction in the burden of ZnD attributable to ZAB of three staple cereals (maize, teff, and wheat) via granular and foliar Zn fertilizer applications was calculated under optimistic and pessimistic scenarios. The associated costs for fertilizer, labor, and equipment were estimated in proportion to the cropping area and compared against DALYs saved and the national Gross Domestic Product capita-1. Results: An estimated 0.55 million DALYs are lost annually due to ZnD, mainly due to ZnD-related mortality (91%). The ZAB of staple cereals via granular Zn fertilizer could reduce the burden of ZnD by 29 and 38% under pessimistic and optimistic scenarios, respectively; the respective values for ZAB via foliar application were 32 and 40%. The ZAB of staple cereals via granular fertilizer costs US$502 and US$505 to avert each DALY lost under optimistic and pessimistic scenarios, respectively; the respective values for ZAB via foliar application were US$226 and US$ 496. Foliar Zn application in combination with existing pesticide use could reduce costs to US$260-353 for each DALY saved. Overall, ZAB of teff and wheat were found to be more cost-effective in addressing ZnD compared to maize, which is less responsive to Zn fertilizer. Conclusion: ZAB of staple crops via granular or foliar applications could be a cost-effective strategy to address ZnD, which can be integrated with the existing fertilizer scheme and pesticide use to minimize the associated costs.

2.
Nutrients ; 14(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079728

RESUMO

Recent surveys have revealed substantial spatial variation in the micronutrient composition of cereals in Ethiopia, where a single national micronutrient concentration values for cereal grains are of limited use for estimating typical micronutrient intakes. We estimated the district-level dietary mineral supply of staple cereals, combining district-level cereal production and crop mineral composition data, assuming cereal consumption of 300 g capita-1 day-1 proportional to district-level production quantity of each cereal. We considered Barley (Hordeum vulgare L.), maize (Zea mays L.), sorghum (Sorghum bicolor (L.) Moench), teff (Eragrostis tef (Zuccagni) Trotter), and wheat (Triticum aestivum L.) consumption representing 93.5% of the total cereal production in the three major agrarian regions. On average, grain cereals can supply 146, 23, and 7.1 mg capita-1 day-1 of Ca, Fe, and Zn, respectively. In addition, the Se supply was 25 µg capita-1 day-1. Even at district-level, cereals differ by their mineral composition, causing a wide range of variation in their contribution to the daily dietary requirements, i.e., for an adult woman: 1-48% of Ca, 34-724% of Fe, 17-191% of Se, and 48-95% of Zn. There was considerable variability in the dietary supply of Ca, Fe, Se, and Zn from staple cereals between districts in Ethiopia.


Assuntos
Eragrostis , Hordeum , Sorghum , Oligoelementos , Grão Comestível , Etiópia , Feminino , Humanos , Micronutrientes , Minerais , Triticum , Zea mays
3.
Front Biosci (Landmark Ed) ; 27(7): 200, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35866386

RESUMO

INTRODUCTION: Selenium (Se) is an essential mineral for livestock health and productivity. In cattle, Se deficiency is associated with delayed conception, growth retardation, and increased morbidity and mortality. METHODS: We conducted a survey of cattle serum (n = 224) and feed (n = 81) samples from two areas with contrasting human and cereal grain Se concentration in Ethiopia. The fodder samples include stover, straw, hay and pasture grass. Se concentration of the samples were measured using inductively coupled plasma-mass spectrometry. RESULTS: Serum Se concentration ranged from 14.9 to 167.8 µg L-1 (median, 41.4 µg L-1). Cattle from East Amhara had significantly greater serum Se concentration compared to cattle from West Amhara (median: 68.4 µg L-1 vs 25.7 µg L-1; p < 0.001). Overall, 79.8% of cattle had Se deficiency (<81 µg L-1). All of the cattle from West Amhara were Se deficient compared with 62.5% of those from East Amhara. State of lactation of cows or age of cattle was not associated with serum Se concentration. The Se concentrations of feed samples ranged from 0.05 to 269.3 µg kg-1. Feed samples from East Amhara had greater Se concentration than samples from West Amhara. Cow serum and cattle feed Se concentrations showed strong spatially correlated variation, with a strong trend from East to West Amhara. CONCLUSIONS: This study shows that cattle Se deficiency is likely to be highly prevalent in Ethiopia, which will negatively affect the health and productivity of livestock. The deficiency appears to be geographical dependent. More extensive surveys to map Se concentration in soil-feed-livestock-human cycle are required in Ethiopia and elsewhere.


Assuntos
Selênio , Ração Animal/análise , Etiópia , Feminino , Humanos , Selênio/análise
4.
Nat Food ; 3(9): 678, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-37118153
5.
Nutrients ; 13(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921853

RESUMO

BACKGROUND: Potassium (K) is an essential mineral and major intracellular electrolyte involved in the regulation of blood pressure, muscle contraction and nerve transmission in humans. Major dietary sources of K include fruits and vegetables, starchy roots and tubers, and whole grains. The aim of this study was to assess and report: (i) the sufficiency of K in national food systems globally, (ii) to quantify the contribution from food groups, and (iii) to explore spatial and temporal trends in the period of 1961-2017. METHODS: Food supply and demography (1961-2017), K composition and K requirement data were combined to estimate per capita human dietary supplies of potassium (DSK), adequate intake of K (AIK) and K sufficiency ratio (KSR) at national, regional, continental and global levels. RESULTS AND DISCUSSION: Globally, the mean ± SD. DSK (mg capita-1 d-1) increased from 2984 ± 915 in 1961 to 3796 ± 1161 in 2017. There was a wide range in DSK between geographical regions and across years, with particularly large increases in east Asia, where DSK increased from <3000 to >5000 mg capita-1 day-1. Roots and tubers contributed the largest dietary source of K, providing up to 80% of DSK in most regions. At the global level, throughout the 57-year period, the population-weighted KSR was <1 based on the 2006 Institute of Medicine AIK recommendation, while it was >1 based on the 2019 National Academies of Science and the 2016 European Union AIK recommendation. While KSR ≥ 1 shows sufficiency of DSK, KSR < 1 does not indicate K deficiency risk. CONCLUSION: Due to the absence of a Recommended Daily Allowance (RDA) for K, this study used the ratio of DSK:AIK (i.e., KSR) to assess dietary K sufficiency. Estimates of dietary K sufficiency are, therefore, highly sensitive to the AIK reference value used and this varied greatly based on different institutions and years. To quantify the risk of dietary K deficiency, bridging the data gap to establish an RDA for K should be a global research priority.


Assuntos
Abastecimento de Alimentos/estatística & dados numéricos , Saúde Global/tendências , Potássio na Dieta/análise , Dieta Saudável/tendências , Humanos , Deficiência de Potássio , Recomendações Nutricionais , Pesquisa , Fatores de Risco , Sódio na Dieta/análise , Análise Espaço-Temporal
6.
Plant Soil ; 457(1): 25-41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268909

RESUMO

AIM: Magnesium (Mg) deficiency (known as grass tetany) is a serious metabolic disorder that affects grazing ruminants. We tested whether Mg-fertiliser can increase Mg concentration of Italian ryegrasses (Lolium multiflorum L.) including a cultivar (cv. Bb2067; 'Magnet'), bred to accumulate larger concentrations of Mg. METHODS: Under controlled environment (CE) conditions, three cultivars (cv. Bb2067, cv. Bb2068, cv. RvP) were grown in low-nutrient compost at six fertiliser rates (0-1500 µM MgCl2.6H2O). Under field conditions, the three cultivars in the CE condition and cv. Alamo were grown at two sites, and four rates of MgSO4 fertiliser application rates (0-200 kg ha-1 MgO). Multiple grass cuts were taken over two-years. RESULTS: Grass Mg concentration increased with increasing Mg-fertiliser application rates in all cultivars and conditions. Under field conditions, cv. Bb2067 had 11-73% greater grass Mg concentration and smaller forage tetany index (FTI) than other cultivars across the Mg-fertiliser application rates, sites and cuts. Grass dry matter (DM) yield of cv. Bb2067 was significantly (p < 0.05) smaller than cv. Alamo. The effect of Mg-fertiliser rate on DM yield was not significant (p ≥ 0.05). CONCLUSIONS: Biofortification of grass with Mg through breeding and agronomy can improve the forage Mg concentration for grazing ruminants, even in high-growth spring grass conditions when hypomagnesaemia is most prevalent. Response to agronomic biofortification varied with cultivar, Mg-fertiliser rate, site and weather. The cost:benefit of these approaches and farmer acceptability, and the impact on cattle and sheep grazing on grasses biofortified with Mg requires further investigation.

7.
PLoS One ; 14(10): e0223868, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31603922

RESUMO

Hypomagnesaemic tetany (HypoMgT) in ruminants is a physiological disorder caused by inadequate intake or impaired absorption of magnesium (Mg) in the gut. If it is not detected and treated in time, HypoMgT can cause the death of the affected animal. A semi-structured questionnaire survey was conducted from July 2016-2017 to assess farmers' awareness of HypoMgT in cattle and sheep in the UK. The questionnaire was distributed to farmers at farm business events and agricultural shows, and through a collaborative group of independent veterinary practices to their clients. Farmers were asked about (i) the incidence of presumed HypoMgT (PHT); (ii) their strategies to treat or prevent HypoMgT; (iii) mineral tests on animals, forage and soil, and (iv) farm enterprise type. A total of 285 responses were received from 82 cattle, 157 mixed cattle and sheep, and 46 sheep farmers, of whom 39% reported HypoMgT in their livestock, affecting 1-30 animals. Treatment and/or prevention against HypoMgT was reported by 96% respondents with PHT and 79% of those without. Mineral tests on animal, forage, and soil was conducted by 24%, 53%, and 66% of the respondents, respectively, regardless of PHT. There was a highly significant association between the use of interventions to tackle HypoMgT and the incidence of PHT (p < 0.01). The top three treatment/prevention strategies used were reported as being free access supplementation (149), in feed supplementation (59) and direct to animal treatments (drenches, boluses and injections) (45) although these did vary by farm type. Although some (9) reported using Mg-lime, no other pasture management interventions were reported (e.g., Mg-fertilisation or sward composition). Generally, the results indicate that UK farmers are aware of the risks of HypoMgT. A more integrated soil-forage-animal assessment may improve the effectiveness of tackling HypoMgT and help highlight the root causes of the problem.


Assuntos
Doenças dos Bovinos/epidemiologia , Fazendeiros/psicologia , Deficiência de Magnésio/veterinária , Doenças dos Ovinos/epidemiologia , Tetania/veterinária , Animais , Bovinos , Doenças dos Bovinos/terapia , Indústria de Laticínios , Fazendas , Conhecimentos, Atitudes e Prática em Saúde , Incidência , Deficiência de Magnésio/complicações , Deficiência de Magnésio/epidemiologia , Deficiência de Magnésio/terapia , Ovinos , Doenças dos Ovinos/terapia , Inquéritos e Questionários , Tetania/induzido quimicamente , Tetania/epidemiologia , Tetania/terapia , Reino Unido/epidemiologia
8.
Sci Rep ; 9(1): 6566, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024041

RESUMO

Selenium (Se) is an essential human micronutrient. Deficiency of Se decreases the activity of selenoproteins and can compromise immune and thyroid function and cognitive development, and increase risks from non-communicable diseases. The prevalence of Se deficiency is unknown in many countries, especially in sub-Saharan Africa (SSA). Here we report that the risk of Se deficiency in Malawi is large among a nationally representative population of 2,761 people. For example, 62.5% and 29.6% of women of reproductive age (WRA, n = 802) had plasma Se concentrations below the thresholds for the optimal activity of the selenoproteins glutathione peroxidase 3 (GPx3; <86.9 ng mL-1) and iodothyronine deiodinase (IDI; <64.8 ng mL-1), respectively. This is the first nationally representative evidence of widespread Se deficiency in SSA. Geostatistical modelling shows that Se deficiency risks are influenced by soil type, and also by proximity to Lake Malawi where more fish is likely to be consumed. Selenium deficiency should be quantified more widely in existing national micronutrient surveillance programmes in SSA given the marginal additional cost this would incur.


Assuntos
Selênio/sangue , Selênio/deficiência , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Feminino , Glutationa Peroxidase/metabolismo , Humanos , Malaui , Masculino , Pessoa de Meia-Idade , Reprodução/fisiologia , Adulto Jovem
9.
PLoS One ; 12(11): e0187651, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29121079

RESUMO

Moringa oleifera (MO) and M. stenopetala (MS) are two commonly cultivated species of the Moringaceae family. Some households in southern Ethiopia (S. ETH) and Kenya (KEN) plant MS and MO, respectively. The edible parts of these species are rich in amino acids, vitamins and minerals, especially selenium. Despite their nutritional value, Moringa is sometimes considered as a "famine food". The aim of this study was to determine the extent of dietary utilization of these plants by Moringa Growing Households (MGHs). Moringa growing households were surveyed in 2015. Twenty-four and 56 heads of MGHs from S. ETH and KEN, respectively, were interviewed using semi-structured questionnaires. Subsistence agriculture was the main source of livelihood for all MGHs in S. ETH and 71% of those in KEN. All MGHs in S. ETH cultivated MS while those in KEN cultivated MO. Of the MGH heads in S. ETH, 71% had grown MS as long as they remember; the median cultivation period of MO in KEN was 15 years. All MGHs in S. ETH and 79% in KEN used Moringa leaves as a source of food. Forms of consumption of leaves were boiled fresh leaves, and leaf powder used in tea or mixed with other dishes. Other uses of Moringa include as medicine, fodder, shade, agroforestry, and as a source of income. Although MO and MS have multiple uses, MGHs face several challenges, including a lack of reliable information on nutritional and medicinal values, inadequate access to markets for their products, and pest and disease stresses to their plants. Research and development to address these challenges and to promote the use of these species in the fight against hidden hunger are necessary.


Assuntos
Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Moringa oleifera/crescimento & desenvolvimento , Valor Nutritivo , Inquéritos e Questionários , Etiópia , Quênia
10.
PLoS One ; 12(4): e0175503, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28388674

RESUMO

BACKGROUND: Moringa oleifera (MO) and M. stenopetala (MS) (family Moringaceae; order Brassicales) are multipurpose tree/shrub species. They thrive under marginal environmental conditions and produce nutritious edible parts. The aim of this study was to determine the mineral composition of different parts of MO and MS growing in their natural environments and their potential role in alleviating human mineral micronutrient deficiencies (MND) in sub-Saharan Africa. METHODS: Edible parts of MO (n = 146) and MS (n = 50), co-occurring cereals/vegetables and soils (n = 95) underneath their canopy were sampled from localities in southern Ethiopia and Kenya. The concentrations of seven mineral elements, namely, calcium (Ca), copper (Cu), iodine (I), iron (Fe), magnesium (Mg), selenium (Se), and zinc (Zn) in edible parts and soils were determined using inductively coupled plasma-mass spectrometry. RESULTS: In Ethiopian crops, MS leaves contained the highest median concentrations of all elements except Cu and Zn, which were greater in Enset (a.k.a., false banana). In Kenya, Mo flowers and MS leaves had the highest median Se concentration of 1.56 mg kg-1 and 3.96 mg kg-1, respectively. The median concentration of Se in MS leaves was 7-fold, 10-fold, 23-fold, 117-fold and 147-fold more than that in brassica leaves, amaranth leaves, baobab fruits, sorghum grain and maize grain, respectively. The median Se concentration was 78-fold and 98-fold greater in MO seeds than in sorghum and maize grain, respectively. There was a strong relationship between soil total Se and potassium dihydrogen phosphate (KH2PO4)-extractable Se, and Se concentration in the leaves of MO and MS. CONCLUSION: This study confirms previous studies that Moringa is a good source of several of the measured mineral nutrients, and it includes the first wide assessment of Se and I concentrations in edible parts of MO and MS grown in various localities. Increasing the consumption of MO and MS, especially the leaves as a fresh vegetable or in powdered form, could reduce the prevalence of MNDs, most notably Se deficiency.


Assuntos
Minerais/análise , Moringa oleifera/química , Estado Nutricional , Humanos , Moringa oleifera/classificação , Especificidade da Espécie
11.
Plant Soil ; 411(1): 139-150, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32269389

RESUMO

BACKGROUND AND AIMS: Use of zinc (Zn) fertilisers may be cost-effective in increasing crop yields and in alleviating dietary Zn deficiency. However, Zn fertilisers are underutilised in many countries despite the widespread occurrence of Zn-deficient soils. Here, increased Zn fertiliser-use scenarios were simulated for wheat production in Punjab and Sindh Provinces, Pakistan. Inputs and outputs were valued in terms of both potential yield gains as well as health gains in the population. METHODS: The current dietary Zn deficiency risk of 23.9 % in Pakistan was based on food supply and wheat grain surveys. "Disability-adjusted life years (DALYs) lost" are a common metric of disease burden; an estimated 245,000 DALYs y-1 are lost in Punjab and Sindh due to Zn deficiency. Baseline Zn fertiliser-use of 7.3 kt y-1 ZnSO4.H2O was obtained from published and industry sources. The wheat area currently receiving Zn fertilisers, and grain yield responses of 8 and 14 % in Punjab and Sindh, respectively, were based on a recent survey of >2500 farmers. Increased grain Zn concentrations under Zn fertilisation were estimated from literature data and converted to improved Zn intake in humans and ultimately a reduction in DALYs lost. RESULTS: Application of Zn fertilisers to the area currently under wheat production in Punjab and Sindh, at current soil: foliar usage ratios, could increase dietary Zn supply from ~12.6 to 14.6 mg capita -1 d-1, and almost halve the prevalence of Zn deficiency, assuming no other changes to food consumption. Gross wheat yield could increase by 2.0 and 0.6 Mt. grain y-1 in Punjab and Sindh, respectively, representing an additional return of US$ >800 M and an annual increased grain supply of 19 kg capita -1. CONCLUSIONS: There are potential market- and subsidy-based incentives to increase Zn fertiliser-use in Pakistan. Benefit-Cost Ratios (BCRs) for yield alone are 13.3 and 17.5 for Punjab and Sindh, respectively. If each DALY is monetised at one to three fold Gross National Income per capita on purchasing power parity (GNIPPP), full adoption of Zn fertiliser for wheat provides an additional annual return of 405-1216 M International Dollars (I$) in Punjab alone, at a cost per DALY saved of I$ 461-619.

12.
Sci Rep ; 5: 10974, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26098577

RESUMO

Globally, more than 800 million people are undernourished while >2 billion people have one or more chronic micronutrient deficiencies (MNDs). More than 6% of global mortality and morbidity burdens are associated with undernourishment and MNDs. Here we show that, in 2011, 3.5 and 1.1 billion people were at risk of calcium (Ca) and zinc (Zn) deficiency respectively due to inadequate dietary supply. The global mean dietary supply of Ca and Zn in 2011 was 684 ± 211 and 16 ± 3 mg capita(-1) d(-1) (± SD) respectively. Between 1992 and 2011, global risk of deficiency of Ca and Zn decreased from 76 to 51%, and 22 to 16%, respectively. Approximately 90% of those at risk of Ca and Zn deficiency in 2011 were in Africa and Asia. To our knowledge, these are the first global estimates of dietary Ca deficiency risks based on food supply. We conclude that continuing to reduce Ca and Zn deficiency risks through dietary diversification and food and agricultural interventions including fortification, crop breeding and use of micronutrient fertilisers will remain a significant challenge.


Assuntos
Cálcio da Dieta/farmacologia , Zinco/deficiência , Ingestão de Energia , Humanos , Renda , Ácido Fítico/análise , Prevalência , Fatores de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...