Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 110: 103994, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32771880

RESUMO

The aim of the presented study was to estimate the material properties of human patellar ligaments from the elderly population by means of tensile tests. The experimental part was conducted on a custom tensile-testing device, with a built-in enclosure to simulate in-vivo conditions, using 25 (15 female, 10 male) bone-ligament-bone samples from elderly (age 83 (8)) human donors. During the tensile tests, the resultant force and displacement of the sample attachments were recorded. With this data and the values of the initial length and the initial cross-sectional area of the samples, the engineering stress and strain, the Young's modulus and the toughness at rupture were calculated for each sample. The results were then averaged and presented for all the samples together and for the female and male populations separately. The measured Young's modulus and the failure stress values were found to be significantly higher for the female samples compared to the male (p < 0.05). All the other measured properties did not show a significant difference. The toe region's material properties for the patellar ligament were also presented as valuable information for the anterior cruciate ligament reconstruction. The tensile-test results were compared to other research carried on human patellar ligaments using samples from younger donors. The comparison showed that the samples from the elderly population exhibit lower values of strain at the end of the toe region and have a lower failure strain for the patellar ligament. The Young's modulus and the failure stress of the samples in this study were in the range of other research conducted on patellar ligaments.


Assuntos
Ligamento Patelar , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Módulo de Elasticidade , Feminino , Humanos , Masculino , Patela , Estresse Mecânico
2.
Clin Biomech (Bristol, Avon) ; 75: 105012, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371284

RESUMO

BACKGROUND: Cervical spine ligaments that protect the spinal cord and stabilize the spine are frequently injured in motor vehicle collisions and other traumatic situations. These injuries are usually incomplete, and often difficult to notice. The focus of the presented study is placed on analysis of the effect of subfailure load on the mechanical response of the three main cervical spine ligaments: the anterior and the posterior longitudinal ligament and the ligamentum flavum. METHODS: A total of 115 samples of human cadaveric ligaments removed within 24-48 h after death have been tested. Uniaxial tension tests along the fiber direction were performed in physiological conditions on a custom designed test equipment. The ligaments were loaded into an expected damage zone at two different subfailure values (based on previously reported reference group of 46 samples), and then reloaded to failure. FINDINGS: The main effect of a high subfailure load has proven to be the toe elongation change. The toe elongation increase is affected by the subfailure load value. While anterior and posterior longitudinal ligament showed similar changes, the smallest subfailure effect was found in ligamentum flavum. INTERPRETATIONS: The normal physiological region of the cervical spine ligaments mechanical response is modified by a high subfailure load. The observed ligament injury significantly compromises ligament ability to give tensile support within physiological spinal motion.


Assuntos
Vértebras Cervicais/fisiologia , Ligamentos Articulares/fisiologia , Fenômenos Mecânicos , Fenômenos Biomecânicos , Feminino , Humanos
3.
Accid Anal Prev ; 63: 9-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24246295

RESUMO

Due to the increasing number of traffic accidents involving the collisions of vehicles with the emergency-stop-area head walls in tunnels, a comparative numerical analysis in accordance with the EN 1317 standard has been performed in order to assess the quality of the available protective safety barriers. Based on the simulation results, the values of the relevant injury criteria - the acceleration severity index (ASI), the theoretical head impact velocity (THIV) and the post-impact head deceleration (PHD) - were computed for several collision scenarios involving two different passenger vehicles colliding with two different safety barriers in various ways. The results show that due to the geometrical restrictions in the tunnel's emergency stop area none of the barriers can provide total protection for the occupants of the vehicle in the event of a collision. The installation of a steel-sheet-tube crash cushion was, however, found to provide the best possible protection within the given limitations. The results of the analysis were the basis for selecting a safety-barrier design for existing tunnel installations and for the proposed changes in regulations governing the geometry of the tunnel's emergency stop area.


Assuntos
Aceleração , Acidentes de Trânsito , Desaceleração , Planejamento Ambiental/normas , Desenho de Equipamento/normas , Segurança/normas , Planejamento Ambiental/legislação & jurisprudência , Europa (Continente) , Humanos , Segurança/legislação & jurisprudência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...