Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Brain Commun ; 5(6): fcad258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953850

RESUMO

Human evolution has seen the development of higher-order cognitive and social capabilities in conjunction with the unique laminar cytoarchitecture of the human cortex. Moreover, early-life cortical maldevelopment has been associated with various neurodevelopmental diseases. Despite these connections, there is currently no noninvasive technique available for imaging the detailed cortical laminar structure. This study aims to address this scientific and clinical gap by introducing an approach for imaging human cortical lamina. This method combines diffusion-relaxation multidimensional MRI with a tailored unsupervised machine learning approach that introduces enhanced microstructural sensitivity. This new imaging method simultaneously encodes the microstructure, the local chemical composition and importantly their correlation within complex and heterogenous tissue. To validate our approach, we compared the intra-cortical layers obtained using our ex vivo MRI-based method with those derived from Nissl staining of postmortem human brain specimens. The integration of unsupervised learning with diffusion-relaxation correlation MRI generated maps that demonstrate sensitivity to areal differences in cytoarchitectonic features observed in histology. Significantly, our observations revealed layer-specific diffusion-relaxation signatures, showing reductions in both relaxation times and diffusivities at the deeper cortical levels. These findings suggest a radial decrease in myelin content and changes in cell size and anisotropy, reflecting variations in both cytoarchitecture and myeloarchitecture. Additionally, we demonstrated that 1D relaxation and high-order diffusion MRI scalar indices, even when aggregated and used jointly in a multimodal fashion, cannot disentangle the cortical layers. Looking ahead, our technique holds the potential to open new avenues of research in human neurodevelopment and the vast array of disorders caused by disruptions in neurodevelopment.

2.
Nat Hum Behav ; 7(11): 1812-1813, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37985903
3.
Brain Commun ; 3(4): fcab228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917939

RESUMO

Mitigating the loss of brain tissue due to age is a major problem for an ageing population. Improving cardiorespiratory fitness has been suggested as a possible strategy, but the influenceon brain morphology has not been fully characterized. To investigate the dependent shifts in brain tissue distribution as a function of cardiorespiratory fitness, we used a 3D transport-based morphometry approach. In this study of 172 inactive older adults aged 58-81 (66.5 ± 5.7) years, cardiorespiratory fitness was determined by V O 2 peak (ml/kg/min) during graded exercise and brain morphology was assessed through structural magnetic resonance imaging. After correcting for covariates including age (in the fitness model), gender and level of education, we compared dependent tissue shifts with age to those due to V O 2   peak . We found a significant association between cardiorespiratory fitness and brain tissue distribution (white matter, r = 0.30, P = 0.003; grey matter, r = 0.40, P < 0.001) facilitated by direct visualization of the brain tissue shifts due to cardiorespiratory fitness through inverse transformation-a key capability of 3D transport-based morphometry. A strong statistical correlation was found between brain tissue changes related to ageing and those associated with lower cardiorespiratory fitness (white matter, r = 0.62, P < 0.001; grey matter, r = 0.74, P < 0.001). In both cases, frontotemporal regions shifted the most while basal ganglia shifted the least. Our results highlight the importance of cardiorespiratory fitness in maintaining brain health later in life. Furthermore, this work demonstrates 3D transport-based morphometry as a novel neuroinformatic technology that may aid assessment of therapeutic approaches for brain ageing and neurodegenerative diseases.

4.
Nat Med ; 27(8): 1328, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34326551
6.
Commun Med (Lond) ; 1: 8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602202

RESUMO

Artificial intelligence is changing medicine and it will relieve physicians from the burden of rote knowledge. Here, I discuss how this might affect medical training, drawing from the example of how automation in aviation redefined the role of the pilot.

7.
Proc Natl Acad Sci U S A ; 117(40): 24709-24719, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958644

RESUMO

Many diseases have no visual cues in the early stages, eluding image-based detection. Today, osteoarthritis (OA) is detected after bone damage has occurred, at an irreversible stage of the disease. Currently no reliable method exists for OA detection at a reversible stage. We present an approach that enables sensitive OA detection in presymptomatic individuals. Our approach combines optimal mass transport theory with statistical pattern recognition. Eighty-six healthy individuals were selected from the Osteoarthritis Initiative, with no symptoms or visual signs of disease on imaging. On 3-y follow-up, a subset of these individuals had progressed to symptomatic OA. We trained a classifier to differentiate progressors and nonprogressors on baseline cartilage texture maps, which achieved a robust test accuracy of 78% in detecting future symptomatic OA progression 3 y prior to symptoms. This work demonstrates that OA detection may be possible at a potentially reversible stage. A key contribution of our work is direct visualization of the cartilage phenotype defining predictive ability as our technique is generative. We observe early biochemical patterns of fissuring in cartilage that define future onset of OA. In the future, coupling presymptomatic OA detection with emergent clinical therapies could modify the outcome of a disease that costs the United States healthcare system $16.5 billion annually. Furthermore, our technique is broadly applicable to earlier image-based detection of many diseases currently diagnosed at advanced stages today.


Assuntos
Aprendizado de Máquina , Osteoartrite do Joelho/diagnóstico , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Estudos de Coortes , Progressão da Doença , Diagnóstico Precoce , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/patologia
8.
NPJ Digit Med ; 3: 47, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258429

RESUMO

Machine Intelligence (MI) is rapidly becoming an important approach across biomedical discovery, clinical research, medical diagnostics/devices, and precision medicine. Such tools can uncover new possibilities for researchers, physicians, and patients, allowing them to make more informed decisions and achieve better outcomes. When deployed in healthcare settings, these approaches have the potential to enhance efficiency and effectiveness of the health research and care ecosystem, and ultimately improve quality of patient care. In response to the increased use of MI in healthcare, and issues associated when applying such approaches to clinical care settings, the National Institutes of Health (NIH) and National Center for Advancing Translational Sciences (NCATS) co-hosted a Machine Intelligence in Healthcare workshop with the National Cancer Institute (NCI) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) on 12 July 2019. Speakers and attendees included researchers, clinicians and patients/ patient advocates, with representation from industry, academia, and federal agencies. A number of issues were addressed, including: data quality and quantity; access and use of electronic health records (EHRs); transparency and explainability of the system in contrast to the entire clinical workflow; and the impact of bias on system outputs, among other topics. This whitepaper reports on key issues associated with MI specific to applications in the healthcare field, identifies areas of improvement for MI systems in the context of healthcare, and proposes avenues and solutions for these issues, with the aim of surfacing key areas that, if appropriately addressed, could accelerate progress in the field effectively, transparently, and ethically.

10.
Neuroimage ; 167: 256-275, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29117580

RESUMO

Disease in the brain is often associated with subtle, spatially diffuse, or complex tissue changes that may lie beneath the level of gross visual inspection, even on magnetic resonance imaging (MRI). Unfortunately, current computer-assisted approaches that examine pre-specified features, whether anatomically-defined (i.e. thalamic volume, cortical thickness) or based on pixelwise comparison (i.e. deformation-based methods), are prone to missing a vast array of physical changes that are not well-encapsulated by these metrics. In this paper, we have developed a technique for automated pattern analysis that can fully determine the relationship between brain structure and observable phenotype without requiring any a priori features. Our technique, called transport-based morphometry (TBM), is an image transformation that maps brain images losslessly to a domain where they become much more separable. The new approach is validated on structural brain images of healthy older adult subjects where even linear models for discrimination, regression, and blind source separation enable TBM to independently discover the characteristic changes of aging and highlight potential mechanisms by which aerobic fitness may mediate brain health later in life. TBM is a generative approach that can provide visualization of physically meaningful shifts in tissue distribution through inverse transformation. The proposed framework is a powerful technique that can potentially elucidate genotype-structural-behavioral associations in myriad diseases.


Assuntos
Envelhecimento , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Reconhecimento Automatizado de Padrão/métodos , Idoso , Biomarcadores , Humanos
11.
Neurosurg Focus ; 38(5): E3, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25929965

RESUMO

OBJECT Craniosynostosis is a condition in which one or more of the calvarial sutures fuses prematurely. In addition to the cosmetic ramifications attributable to premature suture fusion, aberrations in neurophysiological parameters are seen, which may result in more significant damage. This work examines the microstructural integrity of white matter, using diffusion tensor imaging (DTI) in a homogeneous strain of rabbits with simple, familial coronal suture synostosis before and after surgical correction. METHODS After diagnosis, rabbits were assigned to different groups: wild-type (WT), rabbits with early-onset complete fusion of the coronal suture (BC), and rabbits that had undergone surgical correction with suturectomy (BC-SU) at 10 days of age. Fixed rabbit heads were imaged at 12, 25, or 42 days of life using a 4.7-T, 40-cm bore Avance scanner with a 7.2-cm radiofrequency coil. For DTI, a 3D spin echo sequence was used with a diffusion gradient (b = 2000 sec/mm(2)) applied in 6 directions. RESULTS As age increased from 12 to 42 days, the DTI differences between WT and BC groups became more pronounced (p < 0.05, 1-way ANOVA), especially in the corpus callosum, cingulum, and fimbriae. Suturectomy resulted in rabbits with no significant differences compared with WT animals, as assessed by DTI of white matter tracts. Also, it was possible to predict to which group an animal belonged (WT, BC, and BC-SU) with high accuracy based on imaging data alone using a linear support vector machine classifier. The ability to predict to which group the animal belonged improved as the age of the animal increased (71% accurate at 12 days and 100% accurate at 42 days). CONCLUSIONS Craniosynostosis results in characteristic changes of major white matter tracts, with differences becoming more apparent as the age of the rabbits increases. Early suturectomy (at 10 days of life) appears to mitigate these differences.


Assuntos
Craniossinostoses/patologia , Craniossinostoses/cirurgia , Substância Branca/patologia , Substância Branca/cirurgia , Animais , Craniossinostoses/metabolismo , Imagem de Tensor de Difusão/métodos , Coelhos , Substância Branca/metabolismo
12.
World J Gastroenterol ; 20(21): 6671-4, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24914393

RESUMO

We report the case of a 34-year-old woman with severe post-infectious gastroparesis who was transferred from an outside medical facility for a second opinion regarding management. This patient had no prior history of gastrointestinal symptoms. However, in the aftermath of a viral illness, she developed two months of intractable nausea, vomiting, and oral intake intolerance that resulted in numerous hospitalizations for dehydration and electrolyte disturbances. A solid-phase gastric emptying scan had confirmed delayed emptying, confirming gastroparesis. Unfortunately, conventional pro-kinetic agents and numerous anti-emetic drugs provided little or no relief of the patient's symptoms. At our institution, the patient experienced a cessation of vomiting, reported a significant reduction in nausea, and tolerated oral intake shortly after taking mirtazapine. Based on mirtazapine's primary action as a serotonin (5-HT) 1a receptor agonist, we infer that this receptor system mediated the clinical improvement through a combination of peripheral and central neural mechanisms. This report highlights the potential utility of 5-HT1a agonists in the management of nausea and vomiting. We conclude that mirtazapine may be effective in treating symptoms associated with non-diabetic gastroparesis that are refractory to conventional therapies.


Assuntos
Gastroparesia/complicações , Gastroparesia/tratamento farmacológico , Mianserina/análogos & derivados , Viroses/complicações , Dor Abdominal/tratamento farmacológico , Antagonistas Adrenérgicos alfa/uso terapêutico , Adulto , Antieméticos/uso terapêutico , Feminino , Esvaziamento Gástrico , Humanos , Mianserina/uso terapêutico , Mirtazapina , Náusea/tratamento farmacológico , Antagonistas do Receptor 5-HT1 de Serotonina/uso terapêutico , Resultado do Tratamento , Vômito/tratamento farmacológico
13.
J Comput Assist Tomogr ; 38(3): 485-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651748

RESUMO

We report a case of intractable seizures secondary to an angioglioma that was misdiagnosed as post-traumatic encephalomalacia for over a decade, with a discussion of the radiological findings and a review of the literature.


Assuntos
Neoplasias Encefálicas/patologia , Erros de Diagnóstico/prevenção & controle , Encefalomalacia/patologia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Adulto , Diagnóstico Diferencial , Humanos , Masculino
15.
Eur Radiol ; 23(6): 1564-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23494492

RESUMO

OBJECTIVE: To investigate the collapsibility of the lung and individual lobes in patients with COPD during inspiration/expiration and assess the association of whole lung and lobar volume changes with pulmonary function tests (PFTs) and disease severity. METHODS: PFT measures used were RV/TLC%, FEV1% predicted, FVC, FEV1/FVC%, DLco% predicted and GOLD category. A total of 360 paired inspiratory and expiratory CT examinations acquired in 180 subjects were analysed. Automated computerised algorithms were used to compute individual lobe and total lung volumes. Lung volume collapsibility was assessed quantitatively using the simple difference between CT computed inspiration (I) and expiration (E) volumes (I-E), and a relative measure of volume changes, (I-E)/I. RESULTS: Mean absolute collapsibility (I-E) decreased in all lung lobes with increasing disease severity defined by GOLD classification. Relative collapsibility (I-E)/I showed a similar trend. Upper lobes had lower volume collapsibility across all GOLD categories and lower lobes collectively had the largest volume collapsibility. Whole lung and left lower lobe collapsibility measures tended to have the highest correlations with PFT measures. Collapsibility of lung lobes and whole lung was also negatively correlated with the degree of air trapping between expiration and inspiration, as measured by mean lung density. All measured associations were statistically significant (P < 0.01). CONCLUSION: Severity of COPD appears associated with increased collapsibility in the upper lobes, but change (decline) in collapsibility is faster in the lower lobes. KEY POINTS: • Inspiratory and expiratory computed tomography allows assessment of lung collapsibility • Lobe volume collapsibility is significantly correlated with measures of lung function. • As COPD severity increases, collapsibility of individual lung lobes decreases. • Upper lobes exhibit more severe disease, while lower lobes decline faster.


Assuntos
Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Idoso , Algoritmos , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador , Testes de Função Respiratória , Tomografia Computadorizada por Raios X/métodos
16.
Eur Radiol ; 23(4): 975-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23111815

RESUMO

OBJECTIVES: To determine the optimal threshold by quantitatively assessing the extent of emphysema at the level of the entire lung and at the level of individual lobes using a large, diverse dataset of computed tomography (CT) examinations. METHODS: This study comprises 573 chest CT examinations acquired from subjects with different levels of airway obstruction (222 none, 83 mild, 141 moderate, 63 severe and 64 very severe). The extent of emphysema was quantified using the percentage of the low attenuation area (LAA%) divided by the total lung or lobe volume(s). The correlations between the extent of emphysema, and pulmonary functions and the five-category classification were assessed using Pearson and Spearman's correlation coefficients, respectively. When quantifying emphysema using a density mask, a wide range of thresholds from -850 to -1,000 HU were used. RESULTS: The highest correlations of LAA% with the five-category classification and PFT measures ranged from -925 to -965 HU for each individual lobe and the entire lung. However, the differences between the highest correlations and those obtained at -950 HU are relatively small. CONCLUSION: Although there are variations in the optimal cut-off thresholds for individual lobes, the single threshold of -950 HU is still an acceptable threshold for density-based emphysema quantification.


Assuntos
Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/epidemiologia , Tomografia Computadorizada por Raios X/métodos , Causalidade , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pennsylvania/epidemiologia , Prevalência , Reprodutibilidade dos Testes , Medição de Risco , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...