Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370721

RESUMO

Cellular senescence is a major driver of aging and disease. Here we show that substrate stiffness modulates the emergence and magnitude of senescence phenotypes after exposure to senescence inducers. Using a primary dermal fibroblast model, we show that decreased substrate stiffness accelerates senescence-associated cell-cycle arrest and regulates the expression of conventional protein-based biomarkers of senescence. We found that the expression of these senescence biomarkers, namely p21WAF1/CIP1 and p16INK4a are mechanosensitive and are in-part regulated by myosin contractility through focal adhesion kinase (FAK)-ROCK signaling. Interestingly, at the protein level senescence-induced dermal fibroblasts on soft substrates (0.5 kPa) do not express p21WAF1/CIP1 and p16INK4a at comparable levels to induced cells on stiff substrates (4GPa). However, cells express CDKN1a, CDKN2a, and IL6 at the RNA level across both stiff and soft substrates. Moreover, when cells are transferred from soft to stiff substrates, senescent cells recover an elevated expression of p21WAF1/CIP1 and p16INK4a at levels comparable to senescence cells on stiff substrates, pointing to a mechanosensitive regulation of the senescence phenotype. Together, our results indicate that the emergent senescence phenotype depends critically on the local mechanical environments of cells and that senescent cells actively respond to changing mechanical cues.

2.
Front Oncol ; 13: 1267577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954082

RESUMO

Objective: The efficacy of platinum-based chemotherapy (PtCh) for pancreatic cancer (PC) patients with DNA damage repair gene mutations (DDRm) compared to those without DDRm remains uncertain. Methods: After a thorough database searching in PubMed, Embase, and Web of Science, a total of 19 studies that met all the inclusion criteria were identified. The primary outcomes were overall survival (OS) and progression-free survival (PFS) for PC patients with DDRm versus those without DDRm after PtCh. Results: Patients with advanced-stage PC who have DDRm tend to have longer OS compared to patients without DDRm, regardless of their exposure to PtCh (HR=0.63; I2 = 66%). Further analyses indicated that the effectiveness of PtCh for OS was modified by DDRm (HR=0.48; I2 = 59%). After the first- line PtCh (1L-PtCh), the PFS of advanced-stage PC with DDRm was also significantly improved (HR=0.41; I2 = 0%). For patients with resected PC, regardless of their exposure to PtCh, the OS for patients with DDRm was comparable to those without DDRm (HR=0.82; I2 = 71%). Specifically, for patients with resected PC harboring DDRm who received PtCh (HR=0.85; I2 = 65%) and for those after non-PtCh (HR=0.87; I2 = 0%), the presence of DDRm did not show a significant association with longer OS. Conclusion: 1L-PtCh treatment is correlated with favorable survival for advanced-stage PC patients with DDRm. For resected-stage PC harboring DDRm, adjuvant PtCh had limited effectiveness. The prognostic value of DDRm needs to be further verified by prospective randomized controlled trials. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022302275.

3.
Cancer Lett ; 573: 216366, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37640197

RESUMO

Tumor antigens are crucial targets for T-cell-based therapy to induce tumor-specific rejection. However, identifying pancreatic ductal adenocarcinoma (PDAC)-specific T-cell epitopes has been challenging. Using advanced mass spectrometry (MS) analysis, we previously identified cancer-associated, class I MHC-bound epitopes shared by multiple PDAC patients with different HLA-A types. Here, we investigated one of these epitopes, LAMC2203-211, a naturally occurring nonmutated epitope on the LAMC2 protein. Following stimulation with the LAMC2203-211 peptide, we cloned T-cell receptors (TCRs) and transduced them into the Jurkat human T-cell line using a lentiviral vector. We found that Jurkat cells expressing LAMC2203-211-specific TCRs resulted in potent, LAMC2 specific, in vitro cytotoxic effects on PDAC cells. Furthermore, in mice that harbored either subcutaneously or orthotopically implanted tumors originating from both HLA-A allele-matched and unmatched PDAC patients, tumor growth was suppressed in a LAMC2-dependent manner following the infusion of LAMC2-targeting T cells. We have therefore developed a LAMC2-specific TCR-based T-cell therapy strategy likely suitable for many PDAC patients. This is the first study to adopt MS analysis to identify natural CD8+ T-cell epitopes in PDAC that could potentially serve as targets for PDAC immunotherapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Epitopos de Linfócito T , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Receptores de Antígenos de Linfócitos T/genética , Espectrometria de Massas , Terapia Baseada em Transplante de Células e Tecidos , Antígenos HLA-A
4.
MedComm (2020) ; 4(2): e216, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36814688

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with a high rate of recurrence and a dismal 5-year survival rate. Contributing to the poor prognosis of PDAC is the lack of early detection, a complex network of signaling pathways and molecular mechanisms, a dense and desmoplastic stroma, and an immunosuppressive tumor microenvironment. A recent shift toward a neoadjuvant approach to treating PDAC has been sparked by the numerous benefits neoadjuvant therapy (NAT) has to offer compared with upfront surgery. However, certain aspects of NAT against PDAC, including the optimal regimen, the use of radiotherapy, and the selection of patients that would benefit from NAT, have yet to be fully elucidated. This review describes the major signaling pathways and molecular mechanisms involved in PDAC initiation and progression in addition to the immunosuppressive tumor microenvironment of PDAC. We then review current guidelines, ongoing research, and future research directions on the use of NAT based on randomized clinical trials and other studies. Finally, the current use of and research regarding targeted therapy for PDAC are examined. This review bridges the molecular understanding of PDAC with its clinical significance, development of novel therapies, and shifting directions in treatment paradigm.

6.
Biomedicines ; 9(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34440122

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuronal loss. The exact pathogenesis of PD is complex and not yet completely understood, but research has established the critical role mitochondrial dysfunction plays in the development of PD. As the main producer of cytosolic reactive oxygen species (ROS), mitochondria are particularly susceptible to oxidative stress once an imbalance between ROS generation and the organelle's antioxidative system occurs. An overabundance of ROS in the mitochondria can lead to mitochondrial dysfunction and further vicious cycles. Once enough damage accumulates, the cell may undergo mitochondria-dependent apoptosis or necrosis, resulting in the neuronal loss of PD. Polyphenols are a group of natural compounds that have been shown to offer protection against various diseases, including PD. Among these, the plant-derived polyphenol, resveratrol, exhibits neuroprotective effects through its antioxidative capabilities and provides mitochondria protection. Resveratrol also modulates crucial genes involved in antioxidative enzymes regulation, mitochondrial dynamics, and cellular survival. Additionally, resveratrol offers neuroprotective effects by upregulating mitophagy through multiple pathways, including SIRT-1 and AMPK/ERK pathways. This compound may provide potential neuroprotective effects, and more clinical research is needed to establish the efficacy of resveratrol in clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA