Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Biomech (Bristol, Avon) ; 114: 106236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564981

RESUMO

BACKGROUND: Obesity impacts a child's ability to walk with resulting biomechanical adaptations; however, existing research has not comprehensively compared differences across the gait cycle. We examined differences in lower extremity biomechanics across the gait cycle between children with and without obesity at three walking speeds. METHODS: Full gait cycles of age-matched children with obesity (N = 10; BMI: 25.7 ± 4.2 kg/m2) and without obesity (N = 10; BMI: 17.0 ± 1.9 kg/m2) were analyzed at slow, normal, and fast walking speeds. Main and interaction effects of group and speed across hip, knee, and ankle joint angles and moments in sagittal, frontal, and transverse planes were analyzed using one-dimensional statistical parametric mapping. FINDINGS: Compared to children without obesity, children with obesity had greater hip adduction during mid-stance, while also producing greater hip extensor moments during early stance phase, abductor moments throughout most of stance, and hip external rotator moments during late stance. Children with obesity recorded greater knee flexor, knee extensor and knee internal rotator moments during early stance, and knee external rotator moments in late stance than children without obesity; children with obesity also demonstrated greater ankle plantarflexor moments throughout mid and late stance. Interaction effects existed within joint kinetics data; children with obesity produced greater hip extensor moments at initial contact and toe-off when walking at fast compared to normal walking speed. INTERPRETATION: While few kinematic differences existed between the two groups, children with obesity exhibited greater moments at the hip, knee, and ankle during critical periods of controlling and stabilizing mass.


Assuntos
Obesidade Infantil , Velocidade de Caminhada , Criança , Humanos , Marcha , Caminhada , Articulação do Joelho , Articulação do Tornozelo , Fenômenos Biomecânicos
2.
Int J Sports Med ; 37(5): 401-4, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26837929

RESUMO

Footwear affects the biomechanics of children's gait; however, there has been less research addressing the energetics of walking with and without shoes. This study investigated the effects of barefoot and shod walking on metabolic parameters in children. 25 children (9.7±1.4 years) walked at a self-selected pace for 5 min on an instrumented treadmill under 2 footwear conditions (barefoot, running shoe). Vertical oscillations of centre of mass were calculated from ground reaction forces. Expired gases were collected in the last minute of each trial. Paired t-tests revealed significantly higher oxygen consumption (17.6±2.5 ml.kg(-1).min(-1) vs. 16.3±3.1 ml.kg(-1).min(-1)), energy expenditure (3.25±0.86 kcal.min(-1) vs. 2.97±0.68 kcal.min(-1)), and economy (298.2±47.5 ml.kg(-1).km(-1) vs. 275.9±56.9 ml.kg(-1).km(-1)) during the shod condition. There was no difference in substrate utilization between conditions. The barefoot condition elicited a smaller centre of mass vertical displacement (1.24±0.14 cm vs. 1.34±0.17 cm). At a natural walking speed, barefoot walking is more economical than shod walking at the same velocity in children. The higher energy cost of shod walking should be considered when evaluating the use of footwear by children.


Assuntos
Metabolismo Energético , , Sapatos , Caminhada/fisiologia , Fenômenos Biomecânicos , Criança , Teste de Esforço , Feminino , Marcha , Humanos , Masculino , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...