Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Arrhythm Electrophysiol ; 8(4): 933-41, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26022185

RESUMO

BACKGROUND: Mutations of the cardiac voltage-gated sodium channel (SCN5A gene encoding voltage-gated sodium channel [NaV1.5]) cause congenital long-QT syndrome type 3 (LQT3). Most NaV1.5 mutations associated with LQT3 promote a mode of sodium channel gating in which some channels fail to inactivate, contributing to increased late sodium current (INaL), which is directly responsible for delayed repolarization and prolongation of the QT interval. LQT3 patients have highest risk of arrhythmia during sleep or during periods of slow heart rate. During exercise (high heart rate), there is elevated steady-state intracellular free calcium (Ca(2+)) concentration. We hypothesized that higher levels of intracellular Ca(2+) may lower arrhythmia risk in LQT3 subjects through effects on INaL. METHODS AND RESULTS: We tested this idea by examining the effects of varying intracellular Ca(2+) concentrations on the level of INaL in cells expressing a typical LQT3 mutation, delKPQ, and another SCN5A mutation, R225P. We found that elevated intracellular Ca(2+) concentration significantly reduced INaL conducted by mutant channels but not wild-type channels. This attenuation of INaL in delKPQ expressing cells by Ca(2+) was not affected by the CaM kinase II inhibitor KN-93 but was partially attenuated by truncating the C-terminus of the channel. CONCLUSIONS: We conclude that intracellular Ca(2+) contributes to the regulation of INaL conducted by NaV1.5 mutants and propose that, during excitation-contraction coupling, elevated intracellular Ca(2+) suppresses mutant channel INaL and protects cells from delayed repolarization. These findings offer a plausible explanation for the lower arrhythmia risk in LQT3 subjects during fast heart rates.


Assuntos
Arritmias Cardíacas/genética , Cálcio/metabolismo , DNA/genética , Mutação , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Animais , Arritmias Cardíacas/metabolismo , Células Cultivadas , Análise Mutacional de DNA , Modelos Animais de Doenças , Humanos , Ativação do Canal Iônico , Camundongos , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp
2.
JAMA ; 309(14): 1473-82, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23571586

RESUMO

IMPORTANCE: Intrauterine fetal death or stillbirth occurs in approximately 1 out of every 160 pregnancies and accounts for 50% of all perinatal deaths. Postmortem evaluation fails to elucidate an underlying cause in many cases. Long QT syndrome (LQTS) may contribute to this problem. OBJECTIVE: To determine the spectrum and prevalence of mutations in the 3 most common LQTS susceptible genes (KCNQ1, KCNH2, and SCN5A) for a cohort of unexplained cases. DESIGN, SETTING, AND PATIENTS: In this case series, retrospective postmortem genetic testing was conducted on a convenience sample of 91 unexplained intrauterine fetal deaths (mean [SD] estimated gestational age at fetal death, 26.3 [8.7] weeks) that were collected from 2006-2012 by the Mayo Clinic, Rochester, Minnesota, or the Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. More than 1300 ostensibly healthy individuals served as controls. In addition, publicly available exome databases were assessed for the general population frequency of identified genetic variants. MAIN OUTCOMES AND MEASURES: Comprehensive mutational analyses of KCNQ1 (KV7.1, LQTS type 1), KCNH2 (HERG/KV11.1, LQTS type 2), and SCN5A (NaV1.5, LQTS type 3) were performed using denaturing high-performance liquid chromatography and direct DNA sequencing on genomic DNA extracted from decedent tissue. Functional analyses of novel mutations were performed using heterologous expression and patch-clamp recording. RESULTS: The 3 putative LQTS susceptibility missense mutations (KCNQ1, p.A283T; KCNQ1, p.R397W; and KCNH2 [1b], p.R25W), with a heterozygous frequency of less than 0.05% in more than 10 000 publicly available exomes and absent in more than 1000 ethnically similar control patients, were discovered in 3 intrauterine fetal deaths (3.3% [95% CI, 0.68%-9.3%]). Both KV7.1-A283T (16-week male) and KV7.1-R397W (16-week female) mutations were associated with marked KV7.1 loss-of-function consistent with in utero LQTS type 1, whereas the HERG1b-R25W mutation (33.2-week male) exhibited a loss of function consistent with in utero LQTS type 2. In addition, 5 intrauterine fetal deaths hosted SCN5A rare nonsynonymous genetic variants (p.T220I, p.R1193Q, involving 2 cases, and p.P2006A, involving 2 cases) that conferred in vitro electrophysiological characteristics consistent with potentially proarrhythmic phenotypes. CONCLUSIONS AND RELEVANCE: In this molecular genetic evaluation of 91 cases of intrauterine fetal death, missense mutations associated with LQTS susceptibility were discovered in 3 cases (3.3%) and overall, genetic variants leading to dysfunctional LQTS-associated ion channels in vitro were discovered in 8 cases (8.8%). These preliminary findings may provide insights into mechanisms of some cases of stillbirth.


Assuntos
Análise Mutacional de DNA , Morte Fetal/genética , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto , Autopsia , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Feto/fisiopatologia , Expressão Gênica , Humanos , Recém-Nascido , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Masculino , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Estudos Retrospectivos
3.
Circulation ; 127(9): 1009-17, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23388215

RESUMO

BACKGROUND: Life-threatening disorders of heart rhythm may arise during infancy and can result in the sudden and tragic death of a child. We performed exome sequencing on 2 unrelated infants presenting with recurrent cardiac arrest to discover a genetic cause. METHODS AND RESULTS: We ascertained 2 unrelated infants (probands) with recurrent cardiac arrest and dramatically prolonged QTc interval who were both born to healthy parents. The 2 parent-child trios were investigated with the use of exome sequencing to search for de novo genetic variants. We then performed follow-up candidate gene screening on an independent cohort of 82 subjects with congenital long-QT syndrome without an identified genetic cause. Biochemical studies were performed to determine the functional consequences of mutations discovered in 2 genes encoding calmodulin. We discovered 3 heterozygous de novo mutations in either CALM1 or CALM2, 2 of the 3 human genes encoding calmodulin, in the 2 probands and in 2 additional subjects with recurrent cardiac arrest. All mutation carriers were infants who exhibited life-threatening ventricular arrhythmias combined variably with epilepsy and delayed neurodevelopment. Mutations altered residues in or adjacent to critical calcium binding loops in the calmodulin carboxyl-terminal domain. Recombinant mutant calmodulins exhibited several-fold reductions in calcium binding affinity. CONCLUSIONS: Human calmodulin mutations disrupt calcium ion binding to the protein and are associated with a life-threatening condition in early infancy. Defects in calmodulin function will disrupt important calcium signaling events in heart, affecting membrane ion channels, a plausible molecular mechanism for potentially deadly disturbances in heart rhythm during infancy.


Assuntos
Calmodulina/genética , Parada Cardíaca/genética , Síndrome do QT Longo/genética , Sequência de Aminoácidos , Sinalização do Cálcio/genética , Pré-Escolar , Estudos de Coortes , Feminino , Seguimentos , Estudos de Associação Genética/métodos , Parada Cardíaca/diagnóstico , Parada Cardíaca/fisiopatologia , Humanos , Lactente , Recém-Nascido , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/fisiopatologia , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Recidiva
4.
J Gen Physiol ; 141(2): 193-202, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23359282

RESUMO

Tetrodotoxin (TTX)-resistant voltage-gated Na (Na(V)) channels have been implicated in nociception. In particular, Na(V)1.9 contributes to expression of persistent Na current in small diameter, nociceptive sensory neurons in dorsal root ganglia and is required for inflammatory pain sensation. Using ND7/23 cells stably expressing human Na(V)1.9, we elucidated the biophysical mechanisms responsible for potentiation of channel activity by G-protein signaling to better understand the response to inflammatory mediators. Heterologous Na(V)1.9 expression evoked TTX-resistant Na current with peak activation at -40 mV with extensive overlap in voltage dependence of activation and inactivation. Inactivation kinetics were slow and incomplete, giving rise to large persistent Na currents. Single-channel recording demonstrated long openings and correspondingly high open probability (P(o)) accounting for the large persistent current amplitude. Channels exposed to intracellular GTPγS, a proxy for G-protein signaling, exhibited twofold greater current density, slowing of inactivation, and a depolarizing shift in voltage dependence of inactivation but no change in activation voltage dependence. At the single-channel level, intracellular GTPγS had no effect on single-channel amplitude but caused an increased mean open time and greater P(o) compared with recordings made in the absence of GTPγS. We conclude that G-protein activation potentiates human Na(V)1.9 activity by increasing channel open probability and mean open time, causing the larger peak and persistent current, respectively. Our results advance our understanding about the mechanism of Na(V)1.9 potentiation by G-protein signaling during inflammation and provide a cellular platform useful for the discovery of Na(V)1.9 modulators with potential utility in treating inflammatory pain.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular , Humanos , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 302(3): H782-9, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22101522

RESUMO

Na(+) current derived from expression of the cardiac isoform SCN5A is reduced by receptor-mediated or direct activation of protein kinase C (PKC). Previous work has suggested a possible role for loss of Na(+) channels at the plasma membrane in this effect, but the results are controversial. In this study, we tested the hypothesis that PKC activation acutely modulates the intracellular distribution of SCN5A channels and that this effect can be visualized in living cells. In human embryonic kidney cells that stably expressed SCN5A with green fluorescent protein (GFP) fused to the channel COOH-terminus (SCN5A-GFP), Na(+) currents were suppressed by an exposure to PKC activation. Using confocal microscopy, colocalization of SCN5A-GFP channels with the plasma membrane under control and stimulated conditions was quantified. A separate population of SCN5A channels containing an extracellular epitope was immunolabeled to permit temporally stable labeling of the plasma membrane. Our results demonstrated that Na(+) channels were preferentially trafficked away from the plasma membrane by PKC activation, with a major contribution by Ca(2+)-sensitive or conventional PKC isoforms, whereas stimulation of protein kinase A (PKA) had the opposite effect. Removal of the conserved PKC site Ser(1503) or exposure to the NADPH oxidase inhibitor apocynin eliminated the PKC-mediated effect to alter channel trafficking, indicating that both channel phosphorylation and ROS were required. Experiments using fluorescence recovery after photobleaching demonstrated that both PKC and PKA also modified channel mobility in a manner consistent with the dynamics of channel distribution. These results demonstrate that the activation of protein kinases can acutely regulate the intracellular distribution and molecular mobility of cardiac Na(+) channels in living cells.


Assuntos
Miocárdio/enzimologia , Proteína Quinase C/metabolismo , Transporte Proteico/fisiologia , Canais de Sódio/metabolismo , Cálcio/metabolismo , Membrana Celular/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/fisiologia , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Potenciais da Membrana/fisiologia , Contração Miocárdica/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5 , Canais de Sódio/genética
6.
Heart Rhythm ; 9(4): 590-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22064211

RESUMO

BACKGROUND: Congenital long-QT syndrome (LQTS) may present during fetal development and can be life-threatening. The molecular mechanism for the unusual early onset of LQTS during fetal development is unknown. OBJECTIVE: We sought to elucidate the molecular basis for severe fetal LQTS presenting at 19 weeks' gestation, the earliest known presentation of this disease. METHODS: Fetal magnetocardiography was used to demonstrated torsades de pointes and a prolonged rate-corrected QT interval. In vitro electrophysiological studies were performed to determine functional consequences of a novel SCN5A mutation found in the fetus. RESULTS: The fetus presented with episodes of ventricular ectopy progressing to incessant ventricular tachycardia and hydrops fetalis. Genetic analysis disclosed a novel, de novo heterozygous mutation (L409P) and a homozygous common variant (R558 in SCN5A). In vitro electrophysiological studies demonstrated that the mutation in combination with R558 caused significant depolarized shifts in the voltage dependence of inactivation and activation, faster recovery from inactivation, and a 7-fold higher level of persistent current. When the mutation was engineered in a fetal-expressed SCN5A splice isoform, channel dysfunction was markedly potentiated. Also, R558 alone in the fetal splice isoform evoked a large persistent current, and hence both alleles were dysfunctional. CONCLUSION: We report the earliest confirmed diagnosis of symptomatic LQTS and present evidence that mutant cardiac sodium channel dysfunction is potentiated by a developmentally regulated alternative splicing event in SCN5A. Our findings provide a plausible mechanism for the unusual severity and early onset of cardiac arrhythmia in fetal LQTS.


Assuntos
Arritmias Cardíacas/genética , Doenças Fetais/genética , Síndrome do QT Longo/genética , Canais de Sódio/genética , Feminino , Doenças Fetais/diagnóstico , Humanos , Síndrome do QT Longo/diagnóstico , Canal de Sódio Disparado por Voltagem NAV1.5
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...