Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(8): 562, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37626062

RESUMO

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Glomerular hyperfiltration and albuminuria subject the proximal tubule (PT) to a subsequent elevation of workload, growth, and hypoxia. Hypoxia plays an ambiguous role in the development and progression of DKD and shall be clarified in our study. PT-von-Hippel-Lindau (Vhl)-deleted mouse model in combination with streptozotocin (STZ)-induced type I diabetes mellitus (DM) was phenotyped. In contrary to PT-Vhl-deleted STZ-induced type 1 DM mice, proteinuria and glomerular hyperfiltration occurred in diabetic control mice the latter due to higher nitric oxide synthase 1 and sodium and glucose transporter expression. PT Vhl deletion and DKD share common alterations in gene expression profiles, including glomerular and tubular morphology, and tubular transport and metabolism. Compared to diabetic control mice, the most significantly altered in PT Vhl-deleted STZ-induced type 1 DM mice were Ldc-1, regulating cellular oxygen consumption rate, and Zbtb16, inhibiting autophagy. Alignment of altered genes in heat maps uncovered that Vhl deletion prior to STZ-induced DM preconditioned the kidney against DKD. HIF-1α stabilization leading to histone modification and chromatin remodeling resets most genes altered upon DKD towards the control level. These data demonstrate that PT HIF-1α stabilization is a hallmark of early DKD and that targeting hypoxia prior to the onset of type 1 DM normalizes renal cell homeostasis and prevents DKD development.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Animais , Camundongos , Nefropatias Diabéticas/genética , Rim , Túbulos Renais Proximais , Glomérulos Renais , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética
2.
J Mol Neurosci ; 73(7-8): 539-548, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37369878

RESUMO

Dispatched homolog (DISP) proteins have been implicated in the regulation of hedgehog signaling during embryologic development. Although DISP2 has recently been associated with neuronal development and control of cognitive functions, its localization pattern in the mammalian central and peripheral nervous system has not yet been investigated. In this study, the Disp2 expression profile was assessed in human tissues from publicly available transcriptomic datasets. The DISP2 localization pattern was further characterized in the human and rat central nervous system (CNS), as well as within the colonic enteric nervous system (ENS) using dual-label immunohistochemistry. Colocalization of DISP2 with neuronal and glial markers was additionally analyzed in murine primary ENS culture. At transcriptomic level, DISP2 expression was predominant in neuronal cell types of the CNS and ENS. DISP2 immunoreactivity was mainly located within PGP9.5-positive neurons rather than in S100-positive glial cells throughout the nervous system. Investigation of human and rat brain tissues, colonic specimens, and murine ENS primary cultures revealed that DISP2 was located in neuronal cell somata, as well as along neuronal processes both in the human and murine CNS and ENS. Our results indicate that DISP2 is prominently localized within neuronal cells of the CNS and ENS and support putative functions of DISP2 in these tissues.


Assuntos
Sistema Nervoso Entérico , Proteínas Hedgehog , Ratos , Camundongos , Animais , Humanos , Proteínas Hedgehog/metabolismo , Neurônios/metabolismo , Neuroglia , Mamíferos
3.
Sci Signal ; 15(762): eabo7940, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36445937

RESUMO

The lipid kinase VPS34 orchestrates autophagy, endocytosis, and metabolism and is implicated in cancer and metabolic disease. The proximal tubule in the kidney is a key metabolic organ that controls reabsorption of nutrients such as fatty acids, amino acids, sugars, and proteins. Here, by combining metabolomics, proteomics, and phosphoproteomics analyses with functional and superresolution imaging assays of mice with an inducible deficiency in proximal tubular cells, we revealed that VPS34 controlled the metabolome of the proximal tubule. In addition to inhibiting pinocytosis and autophagy, VPS34 depletion induced membrane exocytosis and reduced the abundance of the retromer complex necessary for proper membrane recycling and lipid retention, leading to a loss of fuel and biomass. Integration of omics data into a kidney cell metabolomic model demonstrated that VPS34 deficiency increased ß-oxidation, reduced gluconeogenesis, and enhanced the use of glutamine for energy consumption. Furthermore, the omics datasets revealed that VPS34 depletion triggered an antiviral response that included a decrease in the abundance of apically localized virus receptors such as ACE2. VPS34 inhibition abrogated SARS-CoV-2 infection in human kidney organoids and cultured proximal tubule cells in a glutamine-dependent manner. Thus, our results demonstrate that VPS34 adjusts endocytosis, nutrient transport, autophagy, and antiviral responses in proximal tubule cells in the kidney.


Assuntos
COVID-19 , Glutamina , Humanos , Animais , Camundongos , SARS-CoV-2 , Rim , Nutrientes , Antivirais , Lipídeos
4.
Biochim Biophys Acta Mol Cell Res ; 1869(4): 119190, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968578

RESUMO

Cathepsin B (CatB) is a very abundant lysosomal protease with endo- and carboxydipeptidase activities and even ligase features. In this review, we will provide a general characterization of CatB and describe structure, structure-derived properties and location-dependent proteolytic actions. We depict CatB action within lysosome and its important roles in lysosomal biogenesis, lysosomal homeostasis and autophagy rendering this protease a key player in orchestrating lysosomal functions. Lysosomal leakage and subsequent escape of CatB into the cytosol lead to harmful actions, e.g. the role in activating the NLPR3 inflammasome, affecting immune responses and cell death. The second focus of this review addresses CatB functions in the kidney, i.e. the glomerulus, the proximal tubule and collecting duct with strong emphasis of its role in pathology of the respective segment. Finally, observations regarding CatB functions that need to be considered in cell culture will be discussed. In conclusion, CatB a physiologically important molecule may, upon aberrant expression in different cellular context, become a harmful player effectively showing its teeth behind its smile.


Assuntos
Catepsina B/metabolismo , Rim/metabolismo , Animais , Catepsina B/química , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Inflamassomos/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Lisossomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
5.
J Cell Mol Med ; 23(10): 6543-6553, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31368174

RESUMO

The NPHS2 gene, encoding the slit diaphragm protein podocin, accounts for genetic and sporadic forms of nephrotic syndrome (NS). Patients with NS often present symptoms of volume retention, such as oedema formation or hypertension. The primary dysregulation in sodium handling involves an inappropriate activation of the epithelial sodium channel, ENaC. Plasma proteases in a proteinuria-dependent fashion have been made responsible; however, referring to the timeline of symptoms occurring and underlying mechanisms, contradictory results have been published. Characterizing the mouse model of podocyte inactivation of NPHS2 (Nphs2∆pod ) with respect to volume handling and proteinuria revealed that sodium retention, hypertension and gross proteinuria appeared sequentially in a chronological order. Detailed analysis of Nphs2∆pod during early sodium retention, revealed increased expression of full-length ENaC subunits and αENaC cleavage product with concomitant increase in ENaC activity as tested by amiloride application, and augmented collecting duct Na+ /K+ -ATPase expression. Urinary proteolytic activity was increased and several proteases were identified by mass spectrometry including cathepsin B, which was found to process αENaC. Renal expression levels of precursor and active cathepsin B were increased and could be localized to glomeruli and intercalated cells. Inhibition of cathepsin B prevented hypertension. With the appearance of gross proteinuria, plasmin occurs in the urine and additional cleavage of γENaC is encountered. In conclusion, characterizing the volume handling of Nphs2∆pod revealed early sodium retention occurring independent to aberrantly filtered plasma proteases. As an underlying mechanism cathepsin B induced αENaC processing leading to augmented channel activity and hypertension was identified.


Assuntos
Catepsina B/metabolismo , Canais Epiteliais de Sódio/metabolismo , Hipertensão/etiologia , Hipertensão/metabolismo , Síndrome Nefrótica/complicações , Síndrome Nefrótica/metabolismo , Amilorida/farmacologia , Animais , Catepsina B/antagonistas & inibidores , Catepsina B/genética , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Glomerulosclerose Segmentar e Focal/enzimologia , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/urina , Hipertensão/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Síndrome Nefrótica/genética , Proteinúria/metabolismo , Proteólise , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...