Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198190

RESUMO

Confinement and crowding have been shown to affect protein fates, including folding, functional stability, and their interactions with self and other proteins. Using both theoretical and experimental studies, researchers have established the independent effects of confinement or crowding, but only a few studies have explored their effects in combination; therefore, their combined impact on protein fates is still relatively unknown. Here, we investigated the combined effects of confinement and crowding on protein stability using the pores of agarose hydrogels as a confining agent and the biopolymer, dextran, as a crowding agent. The addition of dextran further stabilized the enzymes encapsulated in agarose; moreover, the observed increases in enhancements (due to the addition of dextran) exceeded the sum of the individual enhancements due to confinement and crowding. These results suggest that even though confinement and crowding may behave differently in how they influence protein fates, these conditions may be combined to provide synergistic benefits for protein stabilization. In summary, our study demonstrated the successful use of polymer-based platforms to advance our understanding of how in vivo like environments impact protein function and structure.


Assuntos
Coronantes/química , Substâncias Macromoleculares/química , Proteínas/química , Dextranos/química , Hidrogéis/química , Polímeros/química , Dobramento de Proteína , Estabilidade Proteica , Sefarose/química
2.
Biopolymers ; 110(4): e23248, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30578630

RESUMO

A desire to replicate the structural and functional complexity of proteins with structured, sequence-specific oligomers motivates study of the structural features of water-soluble peptoids (N-substituted glycine oligomers). Understanding the molecular-level details of peptoid self-assembly in water is essential to advance peptoids' application as novel materials. Peptoid 1, an amphiphilic, putatively helical peptoid previously studied in our laboratory, shows evidence of self-association in aqueous solution. In this work, we evaluate how changes to aqueous solution conditions influence the self-association of 1. We report that changes to pH influence the fluorescence and CD spectroscopic features as well as the peptoid's interaction with a solvatochromic fluorophore and its apparent size as estimated by size exclusion chromatography. Addition of guanidine hydrochloride and ammonium sulfate also modulate spectroscopic features of the peptoid, its interaction with a solvatochromic fluorophore, and its elution in size exclusion chromatography. These data suggest that the ordering of the self-assembly changes in response to pH and with solvent additives and is more ordered at higher pH and in the presence of guanidine hydrochloride. The deeper understanding of the self-association of 1 afforded by these studies informs the design of new stimuli-responsive peptoids with stable tertiary or quaternary structures.


Assuntos
Peptoides/química , Água/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Solubilidade , Solventes/química , Espectrometria de Fluorescência
3.
PLoS One ; 9(1): e86785, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466239

RESUMO

Research over the past few decades has attempted to answer how proteins behave in molecularly confined or crowded environments when compared to dilute buffer solutions. This information is vital to understanding in vivo protein behavior, as the average spacing between macromolecules in the cell cytosol is much smaller than the size of the macromolecules themselves. In our study, we attempt to address this question using three structurally and functionally different model enzymes encapsulated in agarose gels of different porosities. Our studies reveal that under standard buffer conditions, the initial reaction rates of the agarose-encapsulated enzymes are lower than that of the solution phase enzymes. However, the encapsulated enzymes retain a higher percentage of their activity in the presence of denaturants. Moreover, the concentration of agarose used for encapsulation had a significant effect on the enzyme functional stability; enzymes encapsulated in higher percentages of agarose were more stable than the enzymes encapsulated in lower percentages of agarose. Similar results were observed through structural measurements of enzyme denaturation using an 8-anilinonaphthalene-1-sulfonic acid fluorescence assay. Our work demonstrates the utility of hydrogels to study protein behavior in highly confined environments similar to those present in vivo; furthermore, the enhanced stability of gel-encapsulated enzymes may find use in the delivery of therapeutic proteins, as well as the design of novel strategies for biohybrid medical devices.


Assuntos
Hidrogéis/química , Sefarose/química , Estabilidade Enzimática , Cinética , Porosidade , Soluções/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA