Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 199: 81-96, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775109

RESUMO

Cadmium (Cd) is one of the most toxic compounds released into our environment and is harmful to human health, urging the need to remediate Cd-polluted soils. To this end, it is important to increase our insight into the molecular mechanisms underlying Cd stress responses in plants, ultimately leading to acclimation, and to develop novel strategies for economic validation of these soils. Albeit its non-redox-active nature, Cd causes a cellular oxidative challenge, which is a crucial determinant in the onset of diverse signalling cascades required for long-term acclimation and survival of Cd-exposed plants. Although it is well known that Cd affects reactive oxygen species (ROS) production and scavenging, the contribution of individual organelles to Cd-induced oxidative stress responses is less well studied. Here, we provide an overview of the current information on Cd-induced organellar responses with special attention to redox biology. We propose that an integration of organellar ROS signals with other signalling pathways is essential to finetune plant acclimation to Cd stress.


Assuntos
Cádmio , Estresse Oxidativo , Humanos , Cádmio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Plantas/metabolismo , Aclimatação , Biologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...