Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 138(49): 15950-15955, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960353

RESUMO

By using a high-pressure reaction, we prepared a new oxynitride ZnTaO2N that crystallizes in a centrosymmetric (R3̅c) high-temperature LiNbO3-type structure (HTLN-type). The stabilization of the HTLN-type structure down to low temperatures (at least 20 K) makes it possible to investigate not only the stability of this phase, but also the phase transition to a noncentrosymmetric (R3c) LiNbO3-type structure (LN-type) which is yet to be clarified. Synchrotron and neutron diffraction studies in combination with transmission electron microscopy show that Zn is located at a disordered 12c site instead of 6a, implying an order-disorder mechanism of the phase transition. It is found that the closed d-shell of Zn2+, as well as the high-valent Ta5+ ion, is responsible for the stabilization of the HTLN-type structure, affording a novel quasitriangular ZnO2N coordination. Interestingly, only 3% Zn substitution for MnTaO2N induces a phase transition from LN- to HTLN-type structure, implying the proximity in energy between the two structural types, which is supported by the first-principles calculations.

2.
Angew Chem Int Ed Engl ; 55(33): 9667-70, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27355695

RESUMO

The high-pressure synthesis of a manganese oxyhydride LaSrMnO3.3 H0.7 is reported. Neutron and X-ray Rietveld analyses showed that this compound adopts the K2 NiF4 structure with hydride ions positioned exclusively at the equatorial site. This result makes a striking contrast to topochemical reductions of LaSrMnO4 that result in only oxygen-deficient phases down to LaSrMnO3.5 . This suggests that high H2 pressure plays a key role in stabilizing the oxyhydride phase, offering an opportunity to synthesize other transition-metal oxyhydrides. Magnetic susceptibility revealed a spin-glass transition at 24 K that is due to competing ferromagnetic (Mn(2+) -Mn(3+) ) and antiferromagnetic (Mn(2+) -Mn(2) , Mn(3+) -Mn(3+) ) interactions.

3.
Angew Chem Int Ed Engl ; 54(2): 516-21, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25417894

RESUMO

The synthesis, structure, and magnetic properties of a polar and magnetic oxynitride MnTaO2N are reported. High-pressure synthesis at 6 GPa and 1400 °C allows for the stabilization of a high-density structure containing middle-to-late transition metals. Synchrotron X-ray and neutron diffraction studies revealed that MnTaO2N adopts the LiNbO3-type structure, with a random distribution of O(2-) and N(3-) anions. MnTaO2N with an "orbital-inactive" Mn(2+) ion (d(5); S=5/2) exhibits a nontrivial helical spin order at 25 K with a propagation vector of [0,0,δ] (δ≈0.3), which is different from the conventional G-type order observed in other orbital-inactive perovskite oxides and LiNbO3-type oxides. This result suggests the presence of strong frustration because of the heavily tilted MnO4N2 octahedral network combined with the mixed O(2-)/N(3-) species that results in a distribution of (super)-superexchange interactions.

4.
Angew Chem Int Ed Engl ; 53(39): 10377-80, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25115824

RESUMO

We report a novel oxyhydride SrCrO2H directly synthesized by a high-pressure high-temperature method. Powder neutron and synchrotron X-ray diffraction revealed that this compound adopts the ideal cubic perovskite structure (Pm3̄m) with O(2-)/H(-) disorder. Surprisingly, despite the non-bonding nature between Cr 3d t(2g) orbitals and the H 1s orbital, it exhibits G-type spin ordering at T(N)≈380 K, which is higher than that of RCrO3 (R=rare earth) and any chromium oxides. The enhanced T(N) in SrCrO2H with four Cr-O-Cr bonds in comparison with RCr(3+)O3 with six Cr-O-Cr bonds is reasonably explained by the tolerance factor. The present result offers an effective strategy to tune octahedral tilting in perovskites and to improve physical and chemical properties through mixed anion chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...