Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anal Toxicol ; 34(4): 196-203, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20465865

RESUMO

Cannabinoid concentrations in blood and urine after passive exposure to cannabis smoke under real-life conditions were investigated in this study. Eight healthy volunteers were exposed to cannabis smoke for 3 h in a well-attended coffee shop in Maastricht, Netherlands. An initial blood and urine sample was taken from each volunteer before exposure. Blood samples were taken 1.5, 3.5, 6, and 14 h after start of initial exposure, and urine samples were taken after 3.5, 6, 14, 36, 60, and 84 h. The samples were subjected to immunoassay screening for cannabinoids and analyzed using gas chromatography-mass spectrometry (GC-MS) for Delta(9)-tetrahydrocannabinol (THC), 11-nor-hydroxy-Delta(9)-tetrahydrocannabinol (THC-OH), and 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THC-COOH). It could be demonstrated that all volunteers absorbed THC. However, the detected concentrations were rather small. None of the urine samples produced immunoassay results above the cutoff concentration of 25 ng/mL. THC-COOH concentrations up to 5.0 and 7.8 ng/mL before and after hydrolysis, respectively, were found in the quantitative GC-MS analysis of urine. THC could be detected in trace amounts close to the detection limit of the used method in the first two blood samples after initial exposure (1.5 and 3.5 h). In the 6 h blood samples, THC was not detectable anymore. THC-COOH could be detected after 1.5 h and was still found in 3 out of 8 blood samples after 14 h in concentrations between 0.5 and 1.0 ng/mL.


Assuntos
Cannabis/química , Dronabinol/análogos & derivados , Dronabinol/sangue , Dronabinol/urina , Exposição por Inalação , Fumaça/análise , Adulto , Poluição do Ar em Ambientes Fechados , Ensaio de Imunoadsorção Enzimática , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Países Baixos , Reprodutibilidade dos Testes , Fatores de Tempo
2.
Science ; 246(4931): 787-90, 1989 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17748704

RESUMO

The June 1975 meteoroid storm detected on the moon by the Apollo seismometers was the largest ever observed. Reexamination of radio data taken at that time showed that the storm also produced pronounced disturbances on Earth, which were recorded as unique phase anomalies on very low frequency (VLF) radio propagation paths in the low terrestrial ionosphere. Persistent effects were observed for the major storm period (20 to 30 June 1975), including reductions in the diurnal phase variation, advances in the nighttime and daytime phase levels, and reductions in the sunset phase delay rate. Large nighttime phase advances, lasting a few hours, were detected on some days at all VLF transmissions, and for the shorter propagation path they were comparable to solar Lyman alpha daytime ionization. Ion production rates attributable to the meteor storm were estimated to be about 0.6 to 3.0 ions per centimeter cubed per second at the E and D regions, respectively. The storm was a sporadic one with a radiant (that is, the point of apparent origin in the sky) located in the Southern Hemisphere, with a right ascension 1 to 2 hours larger than the sun's right ascension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...