Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SLAS Discov ; 26(6): 783-797, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955247

RESUMO

Classical high-throughput screening (HTS) technologies for the analysis of ionic currents across biological membranes can be performed using fluorescence-based, radioactive, and mass spectrometry (MS)-based uptake assays. These assays provide rapid results for pharmacological HTS, but the underlying, indirect analytical character of these assays can be linked to high false-positive hit rates. Thus, orthogonal and secondary assays using more biological target-based technologies are indispensable for further compound validation and optimization. Direct assay technologies for transporter proteins are electrophysiology-based, but are also complex, time-consuming, and not well applicable for automated profiling purposes. In contrast to conventional patch clamp systems, solid supported membrane (SSM)-based electrophysiology is a sensitive, membrane-based method for transporter analysis, and current technical developments target the demand for automated, accelerated, and sensitive assays for transporter-directed compound screening. In this study, the suitability of the SSM-based technique for pharmacological compound identification and optimization was evaluated performing cell-free SSM-based measurements with the electrogenic amino acid transporter B0AT1 (SLC6A19). Electrophysiological characterization of leucine-induced currents demonstrated that the observed signals were specific to B0AT1. Moreover, B0AT1-dependent responses were successfully inhibited using an established in-house tool compound. Evaluation of current stability and data reproducibility verified the robustness and reliability of the applied assay. Active compounds from primary screens of large compound libraries were validated, and false-positive hits were identified. These results clearly demonstrate the suitability of the SSM-based technique as a direct electrophysiological method for rapid and automated identification of small molecules that can inhibit B0AT1 activity.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Fenômenos Eletrofisiológicos , Ensaios de Triagem em Larga Escala/métodos , Sistemas de Transporte de Aminoácidos Neutros/agonistas , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Animais , Bioensaio/métodos , Transporte Biológico/efeitos dos fármacos , Células CHO , Membrana Celular/metabolismo , Cricetulus , Humanos , Camundongos , Técnicas de Patch-Clamp/métodos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
2.
SLAS Discov ; 24(2): 111-120, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30589598

RESUMO

SLC6A19 (B0AT1) is a neutral amino acid transporter, the loss of function of which results in Hartnup disease. SLC6A19 is also believed to have an important role in amino acid homeostasis, diabetes, and weight control. A small-molecule inhibitor of human SLC6A19 (hSLC6A19) was identified using two functional cell-based assays: a fluorescence imaging plate reader (FLIPR) membrane potential (FMP) assay and a stable isotope-labeled neutral amino acid uptake assay. A diverse collection of 3440 pharmacologically active compounds from the Microsource Spectrum and Tocriscreen collections were tested at 10 µM in both assays using MDCK cells stably expressing hSLC6A19 and its obligatory subunit, TMEM27. Compounds that inhibited SLC6A19 activity in both assays were further confirmed for activity and selectivity and characterized for potency in functional assays against hSLC6A19 and related transporters. A single compound, cinromide, was found to robustly, selectively, and reproducibly inhibit SLC6A19 in all functional assays. Structurally related analogs of cinromide were tested to demonstrate structure-activity relationship (SAR). The assays described here are suitable for carrying out high-throughput screening campaigns to identify modulators of SLC6A19.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Bioensaio/métodos , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Linhagem Celular , Fluorescência , Humanos , Marcação por Isótopo , Potenciais da Membrana , Xenopus laevis
3.
Bioorg Med Chem Lett ; 28(19): 3194-3196, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30146095

RESUMO

This work describes the rational amelioration of Cytochrome P450 4/5 (CYP3A4/5) induction through the Pregnane-X Receptor (PXR) pathway in a series of compounds that modulate the metabotropic glutamate Receptor 2 (mGluR2) via an allosteric mechanism. The compounds were initially shown to induce CYP3A4/5 via the gold-standard induction assay measured in primary human hepatocytes. This was followed up by testing the compounds in a PXR assay which correlated well with the assay in primary cells. Further, one of the compounds was crystallized with PXR (pdb code 6DUP). Analysis of this co-crystal structure, together with previously published PXR co-crystal structures, lead to modification ideas. The compounds synthesized based on these ideas were shown not to be CYP3A4/5 inducers. The mGluR2 activity of the resulting compounds was maintained.


Assuntos
Citocromo P-450 CYP3A/biossíntese , Receptor de Pregnano X/fisiologia , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Regulação Alostérica , Animais , Cristalografia por Raios X , Indução Enzimática/fisiologia , Humanos , Receptor de Pregnano X/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...