Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38597954

RESUMO

Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture. Infected alveolar macrophages (AMs) showed none of these extreme responses. Spike-dependent viral entry into AMs used ACE2 and Sialoadhesin/CD169, whereas IM entry used DC-SIGN/CD209. These results identify activated IMs as a prominent site of viral takeover, the focus of inflammation and fibrosis, and suggest targeting CD209 to prevent early pathology in COVID-19 pneumonia. This approach can be generalized to any human lung infection and to evaluate therapeutics.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Macrófagos , Inflamação , RNA Viral , Pulmão
2.
Nat Commun ; 15(1): 2188, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467625

RESUMO

Hormones mediate long-range cell communication and play vital roles in physiology, metabolism, and health. Traditionally, endocrinologists have focused on one hormone or organ system at a time. Yet, hormone signaling by its very nature connects cells of different organs and involves crosstalk of different hormones. Here, we leverage the organism-wide single cell transcriptional atlas of a non-human primate, the mouse lemur (Microcebus murinus), to systematically map source and target cells for 84 classes of hormones. This work uncovers previously-uncharacterized sites of hormone regulation, and shows that the hormonal signaling network is densely connected, decentralized, and rich in feedback loops. Evolutionary comparisons of hormonal genes and their expression patterns show that mouse lemur better models human hormonal signaling than mouse, at both the genomic and transcriptomic levels, and reveal primate-specific rewiring of hormone-producing/target cells. This work complements the scale and resolution of classical endocrine studies and sheds light on primate hormone regulation.


Assuntos
Cheirogaleidae , Animais , Cheirogaleidae/genética , Cheirogaleidae/metabolismo , Transcriptoma/genética , Evolução Biológica , Hormônios/metabolismo
3.
Elife ; 112022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469459

RESUMO

Pulmonary neuroendocrine cells (PNECs) are sensory epithelial cells that transmit airway status to the brain via sensory neurons and locally via calcitonin gene-related peptide (CGRP) and γ- aminobutyric acid (GABA). Several other neuropeptides and neurotransmitters have been detected in various species, but the number, targets, functions, and conservation of PNEC signals are largely unknown. We used scRNAseq to profile hundreds of the rare mouse and human PNECs. This revealed over 40 PNEC neuropeptide and peptide hormone genes, most cells expressing unique combinations of 5-18 genes. Peptides are packaged in separate vesicles, their release presumably regulated by the distinct, multimodal combinations of sensors we show are expressed by each PNEC. Expression of the peptide receptors predicts an array of local cell targets, and we show the new PNEC signal angiotensin directly activates one subtype of innervating sensory neuron. Many signals lack lung targets so may have endocrine activity like those of PNEC-derived carcinoid tumors. PNECs are an extraordinarily rich and diverse signaling hub rivaling the enteroendocrine system.


Assuntos
Pulmão , Células Neuroendócrinas , Neuropeptídeos , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , Pulmão/patologia , Células Neuroendócrinas/metabolismo , Neuropeptídeos/metabolismo , Análise de Sequência de RNA
4.
Hum Pathol (N Y) ; 252021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522616

RESUMO

Dyskeratosis congenita is a disease of impaired tissue maintenance downstream of telomere dysfunction. Characteristically, patients present with the clinical triad of nail dystrophy, oral leukoplakia, and skin pigmentation defects, but the disease involves degenerative changes in multiple organs. Mutations in telomere-binding proteins such as TINF2 (TRF1-interacting nuclear factor 2) or in telomerase, the enzyme that counteracts age related telomere shortening, are causative in dyskeratosis congenita. We present a patient who presented with severe hypoxemia at age 13. The patient had a history of myelodysplastic syndrome treated with bone marrow transplant at the age of 5. At age 18 she was hospitalized for an acute pneumonia progressing to respiratory failure, developed renal failure and ultimately, she and her family opted to withdraw support as she was not a candidate for a lung transplant. Sequencing of the patient's TINF2 locus revealed a heterozygous mutation (c.844C > T, Arg282Cys) which has previously been reported in a subset of dyskeratosis congenita patients. Tissue sections from multiple organs showed degenerative changes including disorganized bone remodeling, diffuse alveolar damage and small vessel proliferation in the lung, and hyperkeratosis with hyperpigmentation of the skin. Autopsy samples revealed a bimodal distribution of telomere length, with telomeres from donor hematopoietic tissues being an age-appropriate length and those from patient tissues showing pathogenic shortening, with the shortest telomeres in lung, liver, and kidney. We report for the first time a survey of degenerative changes and telomere lengths in multiple organs in a patient with dyskeratosis congenita.

5.
Commun Biol ; 4(1): 314, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750914

RESUMO

Small cell lung cancer (SCLC) is classified as a high-grade neuroendocrine (NE) tumor, but a subset of SCLC has been termed "variant" due to the loss of NE characteristics. In this study, we computed NE scores for patient-derived SCLC cell lines and xenografts, as well as human tumors. We aligned NE properties with transcription factor-defined molecular subtypes. Then we investigated the different immune phenotypes associated with high and low NE scores. We found repression of immune response genes as a shared feature between classic SCLC and pulmonary neuroendocrine cells of the healthy lung. With loss of NE fate, variant SCLC tumors regain cell-autonomous immune gene expression and exhibit higher tumor-immune interactions. Pan-cancer analysis revealed this NE lineage-specific immune phenotype in other cancers. Additionally, we observed MHC I re-expression in SCLC upon development of chemoresistance. These findings may help guide the design of treatment regimens in SCLC.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Pulmonares/genética , Tumores Neuroendócrinos/genética , Carcinoma de Pequenas Células do Pulmão/genética , Transcriptoma , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Linhagem da Célula , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes MHC Classe I , Humanos , Imunofenotipagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Camundongos , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/imunologia , Tumores Neuroendócrinos/patologia , Fenótipo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/patologia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nature ; 587(7835): 619-625, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208946

RESUMO

Although single-cell RNA sequencing studies have begun to provide compendia of cell expression profiles1-9, it has been difficult to systematically identify and localize all molecular cell types in individual organs to create a full molecular cell atlas. Here, using droplet- and plate-based single-cell RNA sequencing of approximately 75,000 human cells across all lung tissue compartments and circulating blood, combined with a multi-pronged cell annotation approach, we create an extensive cell atlas of the human lung. We define the gene expression profiles and anatomical locations of 58 cell populations in the human lung, including 41 out of 45 previously known cell types and 14 previously unknown ones. This comprehensive molecular atlas identifies the biochemical functions of lung cells and the transcription factors and markers for making and monitoring them; defines the cell targets of circulating hormones and predicts local signalling interactions and immune cell homing; and identifies cell types that are directly affected by lung disease genes and respiratory viruses. By comparing human and mouse data, we identified 17 molecular cell types that have been gained or lost during lung evolution and others with substantially altered expression profiles, revealing extensive plasticity of cell types and cell-type-specific gene expression during organ evolution including expression switches between cell types. This atlas provides the molecular foundation for investigating how lung cell identities, functions and interactions are achieved in development and tissue engineering and altered in disease and evolution.


Assuntos
Células/classificação , Células/metabolismo , Imunidade , Pulmão/citologia , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma/genética , Idoso , Animais , Atlas como Assunto , Biomarcadores , Comunicação Celular , Células/imunologia , Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Pulmão/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores de Retorno de Linfócitos/metabolismo , Transdução de Sinais , Células Estromais/metabolismo
7.
Cell ; 179(2): 403-416.e23, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585080

RESUMO

Pulmonary neuroendocrine (NE) cells are neurosensory cells sparsely distributed throughout the bronchial epithelium, many in innervated clusters of 20-30 cells. Following lung injury, NE cells proliferate and generate other cell types to promote epithelial repair. Here, we show that only rare NE cells, typically 2-4 per cluster, function as stem cells. These fully differentiated cells display features of classical stem cells. Most proliferate (self-renew) following injury, and some migrate into the injured area. A week later, individual cells, often just one per cluster, lose NE identity (deprogram), transit amplify, and reprogram to other fates, creating large clonal repair patches. Small cell lung cancer (SCLC) tumor suppressors regulate the stem cells: Rb and p53 suppress self-renewal, whereas Notch marks the stem cells and initiates deprogramming and transit amplification. We propose that NE stem cells give rise to SCLC, and transformation results from constitutive activation of stem cell renewal and inhibition of deprogramming.


Assuntos
Transformação Celular Neoplásica/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Células-Tronco Neoplásicas/patologia , Células Neuroendócrinas/patologia , Receptores Notch/metabolismo , Proteína do Retinoblastoma/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , Lesão Pulmonar/patologia , Neoplasias Pulmonares/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células Neuroendócrinas/metabolismo , Análise de Célula Única/métodos , Carcinoma de Pequenas Células do Pulmão/metabolismo
8.
Cell ; 163(2): 394-405, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26435104

RESUMO

Epithelial cells are normally stably anchored, maintaining their relative positions and association with the basement membrane. Developmental rearrangements occur through cell intercalation, and cells can delaminate during epithelial-mesenchymal transitions and metastasis. We mapped the formation of lung neuroepithelial bodies (NEBs), innervated clusters of neuroendocrine/neurosensory cells within the bronchial epithelium, revealing a targeted mode of cell migration that we named "slithering," in which cells transiently lose epithelial character but remain associated with the membrane while traversing neighboring epithelial cells to reach cluster sites. Immunostaining, lineage tracing, clonal analysis, and live imaging showed that NEB progenitors, initially distributed randomly, downregulate adhesion and polarity proteins, crawling over and between neighboring cells to converge at diametrically opposed positions at bronchial branchpoints, where they reestablish epithelial structure and express neuroendocrine genes. There is little accompanying progenitor proliferation or apoptosis. Activation of the slithering program may explain why lung cancers arising from neuroendocrine cells are highly metastatic.


Assuntos
Movimento Celular , Pulmão/citologia , Células Neuroendócrinas/citologia , Células Neuroendócrinas/metabolismo , Corpos Neuroepiteliais/citologia , Animais , Linhagem da Célula , Regulação para Baixo , Transição Epitelial-Mesenquimal , Pulmão/embriologia , Pulmão/metabolismo , Camundongos , Corpos Neuroepiteliais/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
9.
Curr Opin Pediatr ; 27(3): 341-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25888154

RESUMO

PURPOSE OF REVIEW: Childhood interstitial lung diseases (ILDs) are a diverse class of disorders affecting the alveolar gas exchange region that lack specific treatments and are usually fatal. Here, we integrate recent insights into alveolar cell biology with histopathology from well characterized mutations of surfactant-associated genes. We take a reductionist approach by parsing discrete histological features and correlating each to perturbation of a particular function of the alveolar epithelial type II (AT2) cell, the central driver of disease, to generate a working model for the cellular mechanisms of disease pathogenesis. RECENT FINDINGS: The application of genetically modified mice and single cell genomics has yielded new insights into lung biology, including the identification of a bipotent alveolar progenitor in development, mapping of adult AT2 stem cells in vivo, and demonstration that latent cooperative interactions with fibroblasts can be pathologically activated by targeted injury of the AT2 cell. SUMMARY: As we learn more about individual and cooperative roles for alveolar cells in health, we can dissect how perturbations of specific cellular functions contribute to disease in childhood ILDs. We hope our updated model centered around the AT2 cell as the initiator of disease provides a cellular framework that researchers can build upon and revise as they identify the specific molecular signals within and between alveolar cells that mediate the diverse pathologic features, so that targeted pharmacologic and cell-based treatments for patients can ultimately be engineered.


Assuntos
Doenças Pulmonares Intersticiais/patologia , Pulmão/patologia , Alvéolos Pulmonares/patologia , Animais , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Criança , Modelos Animais de Doenças , Humanos , Pulmão/citologia , Doenças Pulmonares Intersticiais/genética , Camundongos , Alvéolos Pulmonares/citologia , Transdução de Sinais
10.
Curr Opin Pediatr ; 26(3): 320-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24752172

RESUMO

PURPOSE OF REVIEW: There has been tremendous progress in the approach to childhood interstitial lung diseases (chILD), with particular recognition that interstitial lung disease (ILD) in infants is often distinct from the forms that occur in older children and adults. Diagnosis is challenging because of the rarity of ILD and the fact that the presenting symptoms of ILD often overlap those of common respiratory disorders. This review summarizes the newly published recommendations for diagnosis and management, and highlights the recent scientific advances in several specific forms of chILD. RECENT FINDINGS: Clinical practice guidelines emphasize the role for chest computed tomography, genetic testing, and lung biopsy in the diagnostic evaluation of children with suspected ILD. Recent studies have better defined the characteristics and molecular understanding of several different forms of ILD, including neuroendocrine cell hyperplasia of infancy and ILD, due to mutations in genes affecting surfactant production and metabolism. Despite significant progress, definitive therapies are often lacking. SUMMARY: chILD encompasses a collection of rare, diffuse lung diseases. Timely recognition of children with suspected ILD and initiation of appropriate diagnostic evaluations will facilitate medical management. Systematic approaches to clinical care and further studies are needed to improve the outcomes of children with these rare disorders.


Assuntos
Doenças Pulmonares Intersticiais/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Transportadores de Cassetes de Ligação de ATP/genética , Criança , Deleção de Genes , Humanos , Pulmão/crescimento & desenvolvimento , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/fisiopatologia , Mutação , Proteínas Nucleares/genética , Guias de Prática Clínica como Assunto , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...