Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 41(1): 148-158, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967047

RESUMO

Technical challenges have hampered the characterization of biotransformation kinetics-a critical link in understanding and predicting the toxicokinetics and ecotoxicology of organic compounds. A shortcut approach to characterize the in vivo biotransformation rate constant (kM ) with incomplete pathway or metabolite details was proposed. The value of kM can be derived as 2tln1fPC(t)) , with fPC (t) being the molar equivalent fraction of the parent compound (PC) at an early time t in both constant exposure and decay source chemical uptake scenarios. The approximation-based kM values agreed well with kM values derived from rigorous fitting or toxicokinetic modeling (n = 42, root mean square error = 0.30) with accuracy exceeding those of typical toxicokinetic or partitioning models. The method is accurate when sampling time is adequately resolved (i.e., t < ln(2)/kM ) but will likely produce biased kM values with improper time-averaging. The approximate equation yields consistent theoretical expectations for fast and slow biotransformation reactions and is fully compatible with standard bioaccumulation and toxicity testing protocols. The simplification strategy circumvents statistical complications and numerical issues inherent in regressing or modeling the toxicokinetics of multimetabolite systems and may be adapted to similar problems at other physiological scales or ecotoxicological contexts. The method can help advance interspecies comparison of chemical metabolism and support the development of in vitro-in vivo extrapolations and in silico models needed for building next-generation ecological and health risk-assessment practices. Environ Toxicol Chem 2022;41:148-158. © 2021 SETAC.


Assuntos
Poluentes Químicos da Água , Bioacumulação , Biota , Biotransformação , Cinética , Poluentes Químicos da Água/toxicidade
2.
Environ Toxicol Chem ; 40(1): 57-71, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044762

RESUMO

A bioconcentration factor (BCF) database and a toxicokinetic model considering only biota-water partitioning and biotransformation were constructed for neutral organic chemicals in midge. The database contained quality-reviewed BCF and toxicokinetic data with variability constrained to within 0.5 to 1 log unit. Diverse conditions in exposure duration, flow set-up, substrate presence, temperature, and taxonomic classification did not translate into substantial variability in BCF, uptake rate constant (k1 ), or depuration rate constant (kT ), and no systematic bias was observed in BCFs derived in unlabeled versus radiolabeled studies. Substance-specific biotransformation rate constants kM were derived by difference between the calculated biota-water partitioning coefficient (KBW ) and experimental BCF for developing a midge biotransformation model. Experimental midge BCF was modeled as BCF = KBW /(1 + kM/ k2 ) with log kM (kM in h-1 ) = -0.37 log KOW - 0.06T (in K) + 18.87 (root mean square error [RMSE] = 0.60), log k1 (k1 in L kgwet.wt-1 h-1 ) = -0.0747 W (body weight in mgwet.wt ) + 2.35 (RMSE = 0.48). The KBW value was estimated using midge biochemical composition and established polyparameter linear free energy relationships, and the diffusive elimination rate constant (k2 ) was computed as k2 = k1 /KBW. The BCF model predicted >85% of BCFs that associated with neutral organic compounds (log KOW = 1.46 - 7.75) to within 1 log-unit error margin and had comparable accuracy similar to amphipod or fish models. A number of outliers and critical limitations of the kM model were identified and examined, and they largely reflected the inherent limitation of difference-derived kM , the lack of chemical diversity, and inadequate temperature variation in existing data. Future modeling efforts can benefit from more BCF and toxicokinetic observations of BCF on structurally diverse chemicals for model training, validation, and diagnosis. Environ Toxicol Chem 2021;40:57-71. © 2020 SETAC.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Bioacumulação , Biotransformação , Compostos Orgânicos
3.
Environ Sci Pollut Res Int ; 27(22): 28006-28015, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32405947

RESUMO

The occurrence, seasonal variation, and environmental impact of five widely used parabens, methyl-(MeP), ethyl-(EtP), n-propyl-(n-PrP), n-butyl-(n-BuP), and benzyl-(BzP) parabens, were investigated in a municipal wastewater treatment plant (WWTP) located in Guangzhou, China, for 1 year. The concentrations of ∑5parabens in the influent and the effluent were 94.2-957 and 0.89-14.7 ng L-1, respectively. The influent paraben concentrations in autumn were significantly lower than in winter, spring, and summer, and the concentrations were generally higher in spring. The removal efficiencies of ∑5parabens in the dissolved phase were over 96%, with high efficiencies in MeP, EtP, and n-PrP. Risk assessment indicated that parabens in the effluent were not likely to pose an environmental risk to aquatic ecosystems. The present study indicates that the treatment processes employed in full-scale WWTPs are effective at removing parabens and highlights the possibility of utilizing WWTPs for restoring water quality in riverine and coastal regions heavily impacted by paraben contamination.


Assuntos
Águas Residuárias/análise , Poluentes Químicos da Água/análise , China , Ecossistema , Monitoramento Ambiental , Parabenos/análise , Estações do Ano
4.
Environ Sci Pollut Res Int ; 26(36): 36333-36342, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31713826

RESUMO

The occurrence, seasonal variation and emission of nine widely used phosphorus flame retardants (PFRs) were investigated in a wastewater treatment plant (WWTP) located in Guangzhou, China, over 1 year. Results showed that PFRs were widely detected in wastewater and sewage sludge. Tris(2-chloroisopropyl) phosphate (TCIPP) was the most dominant PFRs in influent, effluent, and sludge. Significant seasonal variation of total PFRs in the influent was observed (p < 0.05). However, no significant seasonal variation found in chlorinated and alkyl PFRs. The emission of PFRs was comparable with the previously reported values of decabromodiphenyl ether in WWTPs. Risk quotient for PFRs showed low eco-toxicity risk in effluent for aquatic organisms. Since the removal efficiency of total PFRs was less than 30% and the use of PFRs had been increasing, continuous monitoring of the environmental impact on the receiving water is still needed.


Assuntos
Monitoramento Ambiental/métodos , Retardadores de Chama/análise , Organofosfatos/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , China , Halogenação , Estações do Ano , Esgotos/química
5.
Environ Monit Assess ; 191(2): 102, 2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30685817

RESUMO

Managing and disposing of sewage sludge have been a severe environmental challenge around the world. China produces hundreds of million tons of sewage sludge annually, and a better understanding of the extent and risk of the associated pollution is of critical importance for implementing environmentally safe regulations and practices. The present study examined the quantity, composition, source, and risk of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge from 18 wastewater treatment plants (WWTPs) in Shaanxi, one of China's top coal-producing provinces. The total concentrations of 16 PAHs varied from 778 to 3264 ng/g dry weight, which is below the upper safety limit (5000 ng/g dry weight) set for the disposal of sludge from municipal wastewater treatment plants for agricultural use in China. However, the concentration of individual PAH compound exceeded the acceptable level prescribed by the Netherland Soil Standard. Three-ring PAHs were the most abundant constituent (50% of total PAHs on average), followed by four-ring PAHs averaging 25%. Relative to sludge PAHs in the same region a decade ago, the total concentrations decreased by more than 27% and the composition shifted to a more pronounced dominance by low molecular weight compounds. This compositional shift suggests higher contributions of petrogenic sources, which may reflect China's increasing consumption of petroleum products over the past decade. The flux of sludge PAHs from each WWTP was positively correlated with the corresponding city's GDP and population, and the total flux amounted to over 100 kg each year for WWTPs in the Xi'an city. The mean toxicity equivalent quantity (TEQ) value was more than twice higher than the value recommended by the Netherlands Soil Standard, and seven carcinogenic PAHs were the primary contributor (i.e., 89-99%) of the TEQ. Collectively, our findings demonstrate that sewage sludge PAHs in Shaanxi constitute a significant source of environmental pollution and toxicity, which cautions against the direct discharge and reuse of sewage sludge and further highlights challenges in managing and disposing of the vast quantities of sewage sludge in China.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Animais , China , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco , Poluentes Químicos da Água/toxicidade
6.
Environ Pollut ; 236: 137-145, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29414334

RESUMO

The occurrence, distribution and removal efficiencies of organophosphorus flame retardants (OPFRs) and metals were examined in a municipal landfill leachate treatment system in Guangzhou, China. Five OPFRs and thirty-five metals were detected in wastewater samples collected at different treatment stages. ∑OPFRs was reduced from 4807.02 ng L-1 to 103.91 ng L-1 through the treatment system, with close to 98% removed from the dissolved phase. Tris(clorisopropyl) phosphates (TCPPs) dominated through the treatment process and accounted for over 80% and 50% of ∑OPFRs at the influent and the effluent, respectively. TCPPs were most efficiently removed (98.6%) followed by tris(2-chloroethyl) phosphate (TCEP) (96.6%) and triphenyl phosphate (TPP) (88.5%). For metals, Fe, Cr, and Rb were dominant in the raw leachate, detected at 7.55, 2.82, and 4.50 mg L-1, respectively. Thirteen regulated heavy metals - including eight major pollutants (i.e., As. Cd, Cr, Cu, Hg, Ni, Pb, and Zn) - have been detected in all wastewater samples at sub-mg L-1 levels. Over 99.5% removal was achieved for Cr, Ni, and Fe, and close to 95% removal efficiency was observed for Rb. For the eight major heavy metals, over 99% removal was observed; the only exception was Cu, which was removed at 89%. It was found that microfiltration/reverse osmosis was critical for the removal of OPFRs and heavy metals while the core biological treatment played a minor role towards their removal. Remobilization of Co, Cu, Fe, Hg, Mn, Ni, Sb, and Sr from the returned sludge occurred during the second denitrification, indicating the need for additional post-biological process for effective removal of both contaminants. This study highlights the critical need to develop cheap, effective treatment technologies for contaminants-laden leachate generated from open dumps and under-designed landfills.


Assuntos
Monitoramento Ambiental , Retardadores de Chama/análise , Metais Pesados/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , China , Filtração , Organofosfatos , Esgotos , Águas Residuárias
7.
Water Res ; 128: 138-147, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091804

RESUMO

Energetic materials (EMs) bound to propellant residues can contribute to environmental risk and public health concerns. This work investigated how nitrocellulose, a common binding material in propellants, may control the release dynamics of nitroglycerin (NG) and 2,4-dinitrotoluene (2,4-DNT) from propellant residues. Batch adsorption/desorption experiments on nitrocellulose and re-interpretation on results from past leaching studies involving propellant-bound EMs were conducted. Mechanistic modeling of adsorption/desorption kinetics based on intra-particle diffusion (IPD) predicted aqueous intrinsic diffusivities (Diw) to within a factor of 2 of expected values. Furthermore, the IPD model was able to predict effective diffusivities (Deff) during the early leaching of NG from propellant residues to within a factor of 2 over a 3-log unit range. Prediction of leaching Deff's associated with fired residues was less successful probably due to the neglect of compositional and morphological heterogeneity within the residues. Close correlations were found between the early and late Deff's of residue-bound NG and between the fast- and slow-domain rate constants for both EMs, suggesting that the late leaching kinetics of bound-EMs may be empirically assessed from the early kinetics. This work illustrates that, in addition to dissolution, retarded diffusion through nitrocellulose matrix may also limit the overall release and transformation of residue-bound EMs in the field. Implications and limitations of the current study, and the steps forward are also presented.


Assuntos
Colódio/química , Dinitrobenzenos/química , Nitroglicerina/química , Adsorção , Difusão , Cinética , Modelos Químicos
8.
Chemosphere ; 189: 538-546, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28961539

RESUMO

Plants growing in the soils at military ranges and surrounding locations are exposed, and potentially able to uptake, munitions compounds (MCs). The extent to which a compound is transferred from the environment into organisms such as plants, referred to as bioconcentration, is conventionally measured through uptake experiments with field/synthetic soils. Multiple components/phases that vary among different soil types and affect the bioavailability of the MC, however, hinder the ability to separate the effects of soil characteristics from the MC chemical properties on the resulting plant bioconcentration. To circumvent the problem, this work presents a protocol to measure steady state bioconcentration factors (BCFs) for MCs in barley (Hordeum vulgare L.) using inert laboratory sand rather than field/synthetic soils. Three MCs: 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,4-dinitroanisole (2,4-DNAN), and two munition-like compounds (MLCs): 4-nitroanisole (4-NAN) and 2-methoxy-5-nitropyridine (2-M-5-NPYNE) were evaluated. Approximately constant plant biomass and exposure concentrations were achieved within a one-month period that produced steady state log BCF values: 0.62 ± 0.02, 0.70 ± 0.03, 1.30 ± 0.06, 0.52 ± 0.03, and 0.40 ± 0.05 L kgplant dwt-1 for TNT, 2,4-DNT, 2,4-DNAN, 4-NAN, and 2-M-5-NPYNE, respectively. Furthermore, results suggest that the upper-bounds of the BCFs can be estimated within an order of magnitude by measuring the partitioning of the compounds between barley biomass and water. This highlights the importance of partition equilibrium as a mechanism for the uptake of MCs and MLCs by barley from interstitial water. The results from this work provide chemically meaningful data for prediction models able to estimate the bioconcentration of these contaminants in plants.


Assuntos
Substâncias Explosivas/metabolismo , Hordeum/fisiologia , Poluentes do Solo/metabolismo , Anisóis/análise , Disponibilidade Biológica , Dinitrobenzenos/análise , Monitoramento Ambiental , Substâncias Explosivas/análise , Solo/química , Poluentes do Solo/análise , Trinitrotolueno/análise , Água
9.
Artigo em Inglês | MEDLINE | ID: mdl-28763031

RESUMO

The loading and removal efficiency of 16 US EPA polycyclic aromatic hydrocarbons (PAHs) were examined in an inverted A²/O wastewater treatment plant (WWTP) located in an urban area in China. The total PAH concentrations were 554.3 to 723.2 ng/L in the influent and 189.6 to 262.7 ng/L in the effluent. The removal efficiencies of ∑PAHs in the dissolved phase ranged from 63 to 69%, with the highest observed in naphthalene (80% removal). Concentration and distribution of PAHs revealed that the higher molecular weight PAHs became more concentrated with treatment in both the dissolved phase and the dewatered sludge. The sharpest reduction was observed during the pretreatment and the biological phase. Noncarcinogenic risk, carcinogenic risk, and total health risk of PAHs found in the effluent and sewage sludge were also assessed. The effluent BaP toxic equivalent quantities (TEQBaP) were above, or far above, standards in countries. The potential toxicities of PAHs in sewage effluent were approximately 10 to 15 times higher than the acceptable risk level in China. The health risk associated with the sewage sludge also exceeded international recommended levels and was mainly contributed from seven carcinogenic PAHs. Given that WWTP effluent is a major PAH contributor to surface water bodies in China and better reduction efficiencies are achievable, the present study highlights the possibility of utilizing WWTPs for restoring water quality in riverine and coastal regions heavily impacted by PAHs contamination.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Adulto , China , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco , Águas Residuárias/análise , Poluentes Químicos da Água/toxicidade
10.
Sci Total Environ ; 599-600: 2135-2141, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28558434

RESUMO

Sustainable management of military ranges requires effective assessment of surface mobility and leaching potential of propellant compounds (PCs). Previous studies have focused mostly on PCs' dissolution from fired residues and their sorption to soil components. This work investigated the potential role of nitrocellulose, a major component in propellants, in the binding of PCs to propellant residues. Sorption isotherms of military grade nitrocellulose for dissolved nitroglycerine (NG) or 2,4-dinitrotoluene (2,4-DNT) was measured in batch experiments and were determined to be SNG=102.39(±0.05)CNG0.916(±0.032) and S2,4-DNT=103.08(±0.01)C2,4-DNT0.668(±0.010) (S and C in mg/kgnitrocellulose and mg/Lwat, respectively). Solid-to-water partitioning for NG and 2,4-DNT was 100 times greater in propellant residues than in typical military ranges soils. Since nitrocellulose can sorb NG and 2,4-DNT up to 23 and 5% of its mass, respectively, it can slow down, through retarded diffusion, the leaching of PCs from fired residues over the typical composition ranges of common propellants. The slow leaching of PCs from propellant grains in column studies can be better interpreted by considering their sorptive interaction with nitrocellulose in addition to dissolution kinetics. With nitrocellulose as the carrying matrix, residue-bound PCs may migrate farther and persist longer in subsurface environment.

11.
Environ Pollut ; 220(Pt A): 63-71, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27639615

RESUMO

This study investigated the prevalence and abundance of halogenated flame retardants (HFRs) in sludge samples from 5 sewage treatment plants in Guangzhou, China. Detection of 18 polybrominated diphenyl ethers (PBDEs), 9 alternative HFRs including Dechlorane Plus (DP), brominated alkylbenzenes, and polybrominated biphenyls, and 2 related degradation products was conducted. Decabromodiphenyl ether (BDE 209) and decabromodiphenyl ethane (DBDPE) were the dominant HFRs, with concentrations ranging from 200 to 2150 ng/g and 680-27,400 ng/g, respectively. The DBDPE detected was the highest level reported so far, exceeding those previously reported by 10-100 times. PBDEs were surpassed as the dominant HFRs in sewage sludge, with mean DBDPE/BDE 209 ratio exceeding 2 in all samples. The review of earlier surveys reveals that DBDPE level was surging while BDE 209 was declining. Annual emissions of BDE 209, DP, and DBDPE were estimated to be 227.9, 10.5, and 979.3 kg/yr, respectively. Although ecological risks assessment suggested low risks for the examined sludge, the key environmental properties and transformation pathways of alternative HFRs remain largely unknown. These findings prompt for further investigations on alternative HFR and sustainable management practices for HFR-laden biosolids. The HFR emission pattern revealed in this study is likely representative of other similarly industrialized regions in the post-PBDE era.


Assuntos
Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Esgotos/química , Poluentes Químicos da Água/análise , Bromobenzenos/análise , China , Cidades/estatística & dados numéricos , Halogenação , Hidrocarbonetos Clorados/análise , Bifenil Polibromatos/análise , Compostos Policíclicos/análise , Esgotos/análise
12.
Chemosphere ; 161: 429-437, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27448756

RESUMO

There is concern about the environmental fate and effects of munition constituents (MCs). Polyparameter linear free energy relationships (pp-LFERs) that employ Abraham solute parameters can aid in evaluating the risk of MCs to the environment. However, poor predictions using pp-LFERs and ABSOLV estimated Abraham solute parameters are found for some key physico-chemical properties. In this work, the Abraham solute parameters are determined using experimental partition coefficients in various solvent-water systems. The compounds investigated include hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), hexahydro-1,3-dinitroso-5- nitro-1,3,5-triazine (DNX), 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), and 4-nitroanisole. The solvents in the solvent-water systems are hexane, dichloromethane, trichloromethane, octanol, and toluene. The only available reported solvent-water partition coefficients are for octanol-water for some of the investigated compounds and they are in good agreement with the experimental measurements from this study. Solvent-water partition coefficients fitted using experimentally derived solute parameters from this study have significantly smaller root mean square errors (RMSE = 0.38) than predictions using ABSOLV estimated solute parameters (RMSE = 3.56) for the investigated compounds. Additionally, the predictions for various physico-chemical properties using the experimentally derived solute parameters agree with available literature reported values with prediction errors within 0.79 log units except for water solubility of RDX and HMX with errors of 1.48 and 2.16 log units respectively. However, predictions using ABSOLV estimated solute parameters have larger prediction errors of up to 7.68 log units. This large discrepancy is probably due to the missing R2NNO2 and R2NNO2 functional groups in the ABSOLV fragment database.


Assuntos
Modelos Químicos , Solventes/química , Termodinâmica , Água/química , Anisóis/química , Octanóis/química , Triazinas/química , Trinitrobenzenos/química
13.
Environ Toxicol Chem ; 32(9): 2089-99, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23703865

RESUMO

The bioconcentration factor (BCF) of neutral and weakly polar organic chemicals in fish is modeled using independently calibrated models of chemical partitioning (freely dissolved fraction of chemical in the aqueous phase [φsys ] and wet-weight fish-water partition coefficient [KFW ]), respiratory exchange (respiratory update rate constant [k1 ], and respiratory elimination rate constant [k2 = k1 /KFW ]), and biotransformation (whole-body biotransformation rate constant [kM ]) as BCF = φsys KFW /(1 + kM /k2 ). Existing k1 models tend to overestimate for chemicals with log KOW < 3.5, which constituted 30% to 50% of the examined chemicals. A revised k1 model covering a wider log KOW range (0-8.5) is presented k1 = (5.46 × 10(-6) MW + 0.261/KOW )(-1) , where MW is the molecular weight. The biotransformation rate constant kM is modeled using biota internal partitioning and Abraham parameters as reactivity descriptors. The reductionist model was tested using 3 different BCF data sets (US Environmental Protection Agency's Estimation Programs Interface [EPI], n = 548; Hertfordshire, n = 210; Arnot-Gobas, n = 1855) and compared with the following 3 state-of-the-art models: 1) the EPI Suite BCFBAF module, 2) the European Commision's Computer Assisted Evaluation of industrial chemical Substances According to Regulations (CAESAR), and 3) the EPI/Arnot mechanistic kinetic model. The reductionist model performed comparably with the alternative models (root mean square errors [RMSEs] = 0.72-0.77), with only 5 fitting parameters and no training against experimental BCFs. Respiratory elimination and biotransformation dominate the total depuration (i.e., [k2 + kM ]/kT ≥ 0.8) for approximately 98% of the data entries, thus validating the reductionist approximation. Mechanistic models provide greater insights into bioaccumulation and are more sensitive to biological variation. All three BCF data sets and relevant properties and checkpoint values necessary for reproducing predictions of the reductionist model have been documented. The present study shows that a streamlined mechanistic model of BCF is possible for assessment purposes.


Assuntos
Peixes/metabolismo , Modelos Biológicos , Modelos Químicos , Compostos Orgânicos/metabolismo , Animais , Biotransformação , Bases de Dados Factuais , Cinética , Compostos Orgânicos/química , Análise de Regressão
14.
Environ Toxicol Chem ; 32(8): 1873-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23625748

RESUMO

A model for whole-body in vivo biotransformation of neutral and weakly polar organic chemicals in fish is presented. It considers internal chemical partitioning and uses Abraham solvation parameters as reactivity descriptors. It assumes that only chemicals freely dissolved in the body fluid may bind with enzymes and subsequently undergo biotransformation reactions. Consequently, the whole-body biotransformation rate of a chemical is retarded by the extent of its distribution in different biological compartments. Using a randomly generated training set (n = 64), the biotransformation model is found to be: log (HLφfish ) = 2.2 (±0.3)B - 2.1 (±0.2)V - 0.6 (±0.3) (root mean square error of prediction [RMSE] = 0.71), where HL is the whole-body biotransformation half-life in days, φfish is the freely dissolved fraction in body fluid, and B and V are the chemical's H-bond acceptance capacity and molecular volume. Abraham-type linear free energy equations were also developed for lipid-water (Klipidw ) and protein-water (Kprotw ) partition coefficients needed for the computation of φfish from independent determinations. These were found to be 1) log Klipidw = 0.77E - 1.10S - 0.47A - 3.52B + 3.37V + 0.84 (in Lwat /kglipid ; n = 248, RMSE = 0.57) and 2) log Kprotw = 0.74E - 0.37S - 0.13A - 1.37B + 1.06V - 0.88 (in Lwat /kgprot ; n = 69, RMSE = 0.38), where E, S, and A quantify dispersive/polarization, dipolar, and H-bond-donating interactions, respectively. The biotransformation model performs well in the validation of HL (n = 424, RMSE = 0.71). The predicted rate constants do not exceed the transport limit due to circulatory flow. Furthermore, the model adequately captures variation in biotransformation rate between chemicals with varying log octanol-water partitioning coefficient, B, and V and exhibits high degree of independence from the choice of training chemicals. The present study suggests a new framework for modeling chemical reactivity in biological systems.


Assuntos
Peixes/metabolismo , Modelos Biológicos , Compostos Orgânicos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Biotransformação , Meia-Vida , Concentração de Íons de Hidrogênio , Cinética , Compostos Orgânicos/química , Poluentes Químicos da Água/química
15.
Environ Sci Technol ; 41(22): 7752-8, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18075084

RESUMO

We investigated desorption of native pyrene from field-aged sediments using time-gated, laser-induced fluorescence (LIF) spectroscopy. LIF is superior to conventional analytical methods for the measurement of quickly changing dissolved pyrene because it allows observations at minute-scale resolution, has a low detection limit (approximately 1 ng/L), and minimizes sample loss and disturbance since it requires no system subsampling and chemical analysis. The efficacy of LIF was demonstrated in studies of pyrene desorption from Boston Harbor sediment segregated into different size-fractions (38-75, 75-106, and 180-250 microm diameter) and used in varying solid-to-water ratios (20, 70, and 280 mg(solid)/L). The effects of particle size and solid loading on desorption were consistent with diffusion physics. For suspension conditions between 20 and 280 mg(solids)/L, we observed desorption continuing toward an apparent plateau level over the course of weeks to months. This implies that the characteristic desorption time of pyrene from fine sediments and, by inference, other sediment-bound hydrophobic organic compounds (HOCs) of similar hydrophobicity, exceeds the typical characteristic times for pore water flushing and resuspension events. Consequently, the assumption of local sorption equilibrium in modeling efforts would be inappropriate.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Espectrometria de Fluorescência/métodos , Adsorção , Química Orgânica/métodos , Cromatografia Gasosa/métodos , Difusão , Cinética , Lasers , Magnetismo , Espectrometria de Massas/métodos , Modelos Estatísticos , Pirenos/química , Fatores de Tempo , Água/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...