Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Adv Mater ; : e2400640, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621196

RESUMO

Nowadays, high-valent Cu species (i.e., Cuδ +) are clarified to enhance multi-carbon production in electrochemical CO2 reduction reaction (CO2RR). Nonetheless, the inconsistent average Cu valence states are reported to significantly govern the product profile of CO2RR, which may lead to misunderstanding of the enhanced mechanism for multi-carbon production and results in ambiguous roles of high-valent Cu species. Dynamic Cuδ + during CO2RR leads to erratic valence states and challenges of high-valent species determination. Herein, an alternative descriptor of (sub)surface oxygen, the (sub)surface-oxygenated degree (κ), is proposed to quantify the active high-valent Cu species on the (sub)surface, which regulates the multi-carbon production of CO2RR. The κ validates a strong correlation to the carbonyl (*CO) coupling efficiency and is the critical factor for the multi-carbon enhancement, in which an optimized Cu2O@Pd2.31 achieves the multi-carbon partial current density of ≈330 mA cm-2 with a faradaic efficiency of 83.5%. This work shows a promising way to unveil the role of high-valent species and further achieve carbon neutralization.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668189

RESUMO

Plasmonic metal nanomaterials have been extensively investigated for their utilizations in biomedical sensing and treatment. In this study, plasmonic Au@Ag core-shell nanoisland films (Au@AgNIFs) were successfully grown onto a glass substrate using a seed-mediated growth procedure. The nanostructure of the Au@AgNIFs was confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The UV-Vis spectra of the Au@AgNIFs exhibited a broad absorption in the visible range from 300 to 800 nm because of the surface plasmon absorption. Under simulated sunlight exposure, the temperature of optimal Au@AgNIF was increased to be 66.9 °C to meet the requirement for photothermal bacterial eradication. Furthermore, the Au@AgNIFs demonstrated a consistent photothermal effect during the cyclic on/off exposure to light. For photothermal therapy, the Au@AgNIFs revealed superior efficiency in the photothermal eradication of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). With their unique nanoisland nanostructure, the Au@AgNIFs exhibited excellent growth efficiency of bacteria in comparison with that of the bare glass substrate. The Au@AgNIFs were also validated as a surface-enhanced Raman scattering (SERS) substrate to amplify the Raman signals of E. coli and S. aureus. By integrating photothermal therapy and SERS detection, the Au@AgNIFs were revealed to be a potential platform for bacterial theranostics.

3.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339204

RESUMO

Nanomaterials are widely used in various fields, and ongoing research is focused on developing safe and sustainable nanomaterials. Using zebrafish as a model organism for studying the potentially toxic effects of nanomaterials highlights the importance of developing safe and sustainable nanomaterials. Studies conducted on nanomaterials and their toxicity and potential risks to human and environmental health are vital in biomedical sciences. In the present review, we discuss the potential toxicity of nanomaterials (inorganic and organic) and exposure risks based on size, shape, and concentration. The review further explores various types of nanomaterials and their impacts on zebrafish at different levels, indicating that exposure to nanomaterials can lead to developmental defects, changes in gene expressions, and various toxicities. The review also covers the importance of considering natural organic matter and chorion membranes in standardized nanotoxicity testing. While some nanomaterials are biologically compatible, metal and semiconductor nanomaterials that enter the water environment can increase toxicity to aquatic creatures and can potentially accumulate in the human body. Further investigations are necessary to assess the safety of nanomaterials and their impacts on the environment and human health.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Humanos , Animais , Peixe-Zebra , Nanoestruturas/toxicidade , Nanopartículas Metálicas/toxicidade , Óxidos , Semicondutores
4.
J Am Chem Soc ; 145(49): 27054-27066, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38040669

RESUMO

Single-atom catalysts (SACs) featuring M-N-C moieties have garnered significant attention as efficient electrocatalysts for the oxygen reduction reaction (ORR). However, the role of the dynamic M-N configuration of SACs induced by the derived frameworks under applied ORR potentials remains poorly understood. Herein, we conduct a comprehensive investigation using multiple operando techniques to assess the dynamic configurations of Cu SACs under various microstructural interface (MSI) regulations by anchoring atomic Cu on g-C3N4 and zeolitic imidazolate framework (ZIF) substrates. Cu SACs supported on g-C3N4 exhibit symmetric Cu-N configurations characterized by a reversibly adaptive nature under operational conditions, which leads to their excellent ORR catalytic activity. In contrast, the Cu-N configuration in ZIF-derived Cu SACs undergoes irreversible structural changes during the ORR process, in which the elongated Cu-N pair is unstable and breaks during the ORR, acting as a competing reaction against the ORR and resulting in high overpotential requirements. Crucially, operando time-resolved X-ray absorption spectroscopy (TR-XAS) and Raman results unequivocally reveal the reversibly adapting properties of the local Cu-N configuration in atomic Cu-anchored g-C3N4, which have been overlooked in numerous literatures. All findings provide valuable insights into the potential-driven characteristics of atomic electrocatalysts during target reactions and offer a systematic approach to study atomic electrocatalysts and their corresponding catalytic behaviors.

5.
J Nanobiotechnology ; 21(1): 428, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968705

RESUMO

Nanomaterials, specifically metal nanoclusters (NCs), are gaining attention as a promising class of antibacterial agents. Metal NCs exhibit antibacterial properties due to their ultrasmall size, extensive surface area, and well-controlled surface ligands. The antibacterial mechanisms of metal NCs are influenced by two primary factors: size and surface charge. In this review, we summarize the impacts of size and surface charge of metal NCs on the antibacterial mechanisms, their interactions with bacteria, and the factors that influence their antibacterial effects against both gram-negative and gram-positive bacteria. Additionally, we highlight the mechanisms that occur when NCs are negatively or positively charged, and provide examples of their applications as antibacterial agents. A better understanding of relationships between antibacterial activity and the properties of metal NCs will aid in the design and synthesis of nanomaterials for the development of effective antibacterial agents against bacterial infections. Based on the remarkable achievements in the design of metal NCs, this review also presents conclusions on current challenges and future perspectives of metal NCs for both fundamental investigations and practical antibacterial applications.


Assuntos
Nanopartículas Metálicas , Antibacterianos/farmacologia , Ouro
6.
J Colloid Interface Sci ; 652(Pt A): 294-304, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597411

RESUMO

Tailoring morphology and composition of metal organic frameworks (MOF) can improve energy storage by establishing high surface area, large porosity and multiple redox states. Structure directing agents (SDA) is functional of designing surface properties of electroactive materials. Ammonium fluoride has functional abilities for designing MOF derivatives with excellent energy storage abilities. Systematic design of MOF derivatives using ammonia fluoride-based complex as SDA can essentially create efficient electroactive materials. Metal species can also play significant roles on redox reactions, which are the main energy storage mechanism for battery-type electrodes. In this work, 2-methylimidazole, two novel SDAs of NH4BF4 and NH4HF2, and six metal species of Al, Mn, Co, Ni, Cu and Zn are coupled to synthesize MOF derivatives for energy storage. Metal species-dependent compositions including hydroxides, oxides, and hydroxide nitrates are observed. The nickel-based derivative (Ni-HBF) shows the highest specific capacitance (CF) of 698.0F/g at 20 mV/s, due to multiple redox states and advanced flower-like surface properties. The diffusion and capacitive-control contributions of MOF derivatives are also analyzed. The battery supercapacitor hybrid with Ni-HBF electrode shows a maximum energy density of 27.9 Wh/kg at 325 W/kg. The CF retention of 170.9% and Coulombic efficiency of 93.2% are achieved after 10,000 cycles.

7.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373154

RESUMO

Bacterial infections have become a fatal threat because of the abuse of antibiotics in the world. Various gold (Au)-based nanostructures have been extensively explored as antibacterial agents to combat bacterial infections based on their remarkable chemical and physical characteristics. Many Au-based nanostructures have been designed and their antibacterial activities and mechanisms have been further examined and demonstrated. In this review, we collected and summarized current developments of antibacterial agents of Au-based nanostructures, including Au nanoparticles (AuNPs), Au nanoclusters (AuNCs), Au nanorods (AuNRs), Au nanobipyramids (AuNBPs), and Au nanostars (AuNSs) according to their shapes, sizes, and surface modifications. The rational designs and antibacterial mechanisms of these Au-based nanostructures are further discussed. With the developments of Au-based nanostructures as novel antibacterial agents, we also provide perspectives, challenges, and opportunities for future practical clinical applications.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Nanoestruturas , Humanos , Ouro/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química
8.
Nanomaterials (Basel) ; 12(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296784

RESUMO

Gold nanoclusters have revealed great potential as nanoantibiotics due to their superior chemical and physical characteristics. In this study, a peptide with 83 amino acids derived from haptoglobin was utilized as a surface ligand to synthesize gold nanoclusters via a facile hydrothermal approach. Characterization of the structural and optical properties demonstrated the successful synthesis of derived haptoglobin-conjugated gold nanoclusters. The spherical derived haptoglobin-conjugated gold nanoclusters exhibited a (111) plane of cubic gold and an ultra-small size of 3.6 ± 0.1 nm. The optical properties such as ultraviolet-visible absorption spectra, X-ray photoelectron spectroscopy spectra, fluorescence spectra, and Fourier transform infrared spectra also validated the successful conjugation between the derived haptoglobin peptide and the gold nanoclusters surface. The antibacterial activity, reactive oxygen species production, and antibacterial mechanisms of derived haptoglobin-conjugated gold nanoclusters were confirmed by culturing the bacterium Escherichia coli with hemoglobin to simulate bacteremia. The surface ligand of the derived haptoglobin peptide of derived haptoglobin-conjugated gold nanoclusters was able to conjugate with hemoglobin to inhibit the growth of Escherichia coli. The derived haptoglobin-conjugated gold nanoclusters with an ultra-small size also induced reactive oxygen species production, which resulted in the death of Escherichia coli. The superior antibacterial activity of derived haptoglobin-conjugated gold nanoclusters can be attributed to the synergistic effect of the surface ligand of the derived haptoglobin peptide and the ultra-small size. Our work demonstrated derived haptoglobin-conjugated gold nanoclusters as a promising nanoantibiotic for combating bacteremia.

9.
Nanomaterials (Basel) ; 12(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079985

RESUMO

Globally, breast cancer is one of the most prevalent diseases, inducing critical intimidation to human health. Lipid-based nanomaterials have been successfully demonstrated as drug carriers for breast cancer treatment. To date, the development of a better drug delivery system based on lipid nanomaterials is still urgent to make the treatment and diagnosis easily accessible to breast cancer patients. In a drug delivery system, lipid nanomaterials have revealed distinctive features, including high biocompatibility and efficient drug delivery. Specifically, a targeted drug delivery system based on lipid nanomaterials has inherited the advantage of optimum dosage and low side effects. In this review, insights on currently used potential lipid-based nanomaterials are collected and introduced. The review sheds light on conjugation, targeting, diagnosis, treatment, and clinical significance of lipid-based nanomaterials to treat breast cancer. Furthermore, a brighter side of lipid-based nanomaterials as future potential drug delivery systems for breast cancer therapy is discussed.

10.
Mater Horiz ; 9(9): 2433-2442, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35848594

RESUMO

Two-dimensional (2D) all-inorganic Ruddlesden-Popper (RP) perovskite Cs7Pb6I19 nanosheets (NSs) were successfully developed for the first time by employing a structural recrystallization process with additional passivation of small organic sulfide molecules. The structure of Cs7Pb6I19 NSs is confirmed by powder X-ray diffraction measurements, atomically-resolved STEM measurements and atomic force microscopy (AFM) studies. Cs7Pb6I19 NSs with a specific n value of 6 exhibits unique absorption and emission spectra with intense excitons at 560 nm due to quantum confinement effects in 2D perovskite slabs. The formation mechanisms of 2D Cs7Pb6I19 NSs and 3D γ-CsPbI3 phases were investigated by in situ photoluminescence (PL) spectroscopy and the activation energies of their formation reactions were calculated to be 151 kJ mol-1 and 95.3 kJ mol-1, respectively. The phase stability of 2D Cs7Pb6I19 NSs can be maintained at temperatures below 14 °C for more than 4 weeks. The overall results indicate that 2D Cs7Pb6I19 NSs demonstrate unique optical properties and structural stability compared with other 3D perovskite materials. We have opened a new path to the future discovery of 2D perovskite structures with metastable phases by using this recrystallization method and the assistance of sulfur-derived organic molecules.

11.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745336

RESUMO

The artificial repair of tooth enamel is still an urgent requirement because it has a complicated and well-arranged structure. Herein, calcium phosphate nanoclusters (CaP NCs) were synthesized, via a facile approach, for application in the repair of tooth enamel erosion. Structural and optical characterizations validated the successful preparation of spherical CaP NCs, with an average size of 2.1 ± 0.11 nm. By evaporating the ethanol and triethylamine (TEA) solvents, pure CaP was produced, which was further used to repair the tooth enamel. Simulated caries lesions were achieved via phosphoric acid etching to cause damage to enamel rods. After repair, the damaged enamel rods were directly covered with CaP. According to microhardness testing, after repair with CaP NCs, the hardness value of the tooth enamel with acid etching increased to a similar level to that of normal tooth enamel. The results of the microhardness test indicated that CaP NCs revealed great potential for repairing tooth enamel erosion. Our work demonstrates a promising potential for treating the early stage of tooth erosion with CaP NCs. Based on these findings, we believe that stable CaP NCs can be employed as a precursor for the tunable, effective repair of tooth enamel in the near future.

12.
J Colloid Interface Sci ; 624: 515-526, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35679639

RESUMO

Doping heteroatoms and decorating co-catalyst are intensively applied to improve photocatalytic ability of BiVO4. In this study, it is the first time to design W-doped BiVO4 coupling MIL-101(Fe) as photocatalyst for water oxidation using electrodeposition and hydrothermal processes. Similar system with Mo as dopant has been reported, but the dopant plays important roles on electrochemical performance. It is worthy to study the efficient system with different dopant. Doping amount of W is optimized to achieve high carrier density without creating serious recombination sites. MIL-101(Fe) is decorated on W-doped BiVO4 to suppress surface recombination, create accessible active sites and improve water oxidation kinetics. Optimized W-doped BiVO4/MIL-101(Fe) electrode shows a high photocurrent density of 4.00 mA/cm2 at 1.23 V versus reversible hydrogen electrode (VRHE) under air mass 1.5-global simulated light illumination without hole scavenger in electrolyte, due to large electrochemical surface area, high carrier density and small charge-transfer resistance. The W-doped BiVO4 and BiVO4 electrodes merely show photocurrent densities of 2.96 and 1.72 mA/cm2 at 1.23 VRHE, respectively. Photocurrent retention higher than 95.5% is obtained for W-doped BiVO4/MIL-101 (Fe) electrode under continuous illumination for 6300 s, suggesting lasting photocatalytic ability of this novel W-doped BiVO4/MIL-101(Fe) electrode.

13.
Biosens Bioelectron ; 210: 114338, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35550939

RESUMO

C-Reactive protein (CRP) is an essential biomarker relevant to various disease prognoses. Current biosensors require a significant amount of time for detecting CRP. To address this issue, this work proposes electrokinetic flow-assisted molecule trapping integrated with an impedance biosensor, where a driving signal in terms of a gated sine wave is provided to circularly arranged electrodes which detect proteins. To verify the biosensor's efficacy, protein aggregation on the electrode surface was evaluated through a fluorescence analysis and measurement of the electrochemical impedance spectrum (EIS). The fluorescence analysis with avidin showed that target samples largely accumulated on the electrode surface upon provision of the driving signal. The EIS measurement of CRP accumulation on the electrode surface further confirmed a significant electrokinetic phenomenon at the electrode/electrolyte interface. Even at the low CRP concentration of 10 pg/ml, the proposed device's sensitivity and reliability were as high as 3.92 pg/ml with a signal-to noise ratio (SNR) of ≥3, respectively. In addition, the protein detection time (without considering the preparation time) was minimized to as low as 90 s with the proposed device. This device's advantage is its minimal time consumption, and simple drop-analysis process flow; hence, it was used for monitoring clinical serum samples.


Assuntos
Técnicas Biossensoriais , Proteína C-Reativa/análise , Técnicas Eletroquímicas , Eletrodos , Reprodutibilidade dos Testes
14.
Int J Nanomedicine ; 17: 6821-6842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605560

RESUMO

Across the planet, outbreaks of bacterial illnesses pose major health risks and raise concerns. Photodynamic, photothermal, and metal ion release effects of transition metal-based nanocomposites (TMNs) were recently shown to be highly effective in reducing bacterial resistance and upsurges in outbreaks. Surface plasmonic resonance, photonics, crystal structures, and optical properties of TMNs have been used to regulate metal ion release, produce oxidative stress, and generate heat for bactericidal applications. The superior properties of TMNs provide a chance to investigate and improve their antimicrobial actions, perhaps leading to therapeutic interventions. In this review, we discuss three alternative antibacterial strategies based on TMNs of photodynamic therapy, photothermal therapy, and metal ion release and their mechanistic actions. The scientific community has made significant efforts to address the safety, effectiveness, toxicity, and biocompatibility of these metallic nanostructures; significant achievements and trends have been highlighted in this review. The combination of therapies together has borne significant results to counter antimicrobial resistance (4-log reduction). These three antimicrobial pathways are separated into subcategories based on recent successes, highlighting potential needs and challenges in medical, environmental, and allied industries.


Assuntos
Anti-Infecciosos , Nanocompostos , Elementos de Transição , Nanocompostos/uso terapêutico , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Metais/química
15.
J Colloid Interface Sci ; 607(Pt 2): 1825-1835, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34688975

RESUMO

Metal chalcogenides have been intensively investigated as antibacterial agents due to their unique structures and superior photoactivities. Herein, various structures of copper sulfide (CuS), a metal chalcogenide, such as microspheres (MSs), nanosheets (NSs), and nanoparticles (NPs), were developed in this work for antibacterial applications. A hydrothermal process was utilized to synthesize CuS MSs, CuS NSs, and CuS NPs. Under simulated solar light and near-infrared (NIR) light irradiation, the antibacterial behaviors, reactive oxygen species (ROS) production, and light-driven antibacterial mechanisms of CuS MSs, CuS NSs, and CuS NPs were demonstrated with the bacterium Escherichia coli (E. coli). Bacterial growth curves and ROS generation tests indicated that CuS NSs and CuS NPs had higher light-driven antibacterial activities than that of CuS MSs. ROS of hydroxyl (·OH) and superoxide anion radicals (O2-) were investigated via an electron spin resonance (ESR) spectroscopic analysis by respectively incubating CuS MSs, CuS NSs, and CuS NPs with E. coli under simulated solar light irradiation. Furthermore, E. coli incubated with CuS NPs and CuS NSs showed substantial bacterial degradation after NIR laser irradiation, which was attributed to their photothermal killing effects. Light-driven antibacterial mechanisms of CuS NSs and CuS NPs were investigated, and we discovered that under simulated solar and NIR light irradiation, CuS NSs and CuS NPs produced photoinduced electrons, and the copper ions and photoinduced electrons then reacted with atmospheric moisture to produce hydroxide and superoxide anion radicals and heat, resulting in bacterial mortality.


Assuntos
Cobre , Nanopartículas , Antibacterianos/farmacologia , Cobre/farmacologia , Escherichia coli , Sulfetos
16.
J Colloid Interface Sci ; 607(Pt 2): 1457-1465, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34598027

RESUMO

Lithium iron phosphate (LFP) is one of the promising cathode materials of lithium ion battery (LIB), but poor electrical conductivity restricts its electrochemical performance. Carbon coating can improve electrical conductivity of LFP without changing its intrinsic property. Uniform coating of carbon on LFP is significant to avoid charge congregation and unpreferable redox reactions. It is the first time to apply the commercial organic binder, Super P® (SP), as carbon source to achieve uniform coating on LFP as cathode material of LIB. The simple and economical mechanofusion method is firstly applied to coat different amounts of SP on LFP. The LIB with the cathode material of optimized SP-coated LFP shows the highest capacity of 165.6 mAh/g at 0.1C and 59.8 mAh/g at 10C, indicating its high capacity and excellent high-rate charge/discharge capability. SP is applied on other commercial LFP materials, M121 and M23, for carbon coating. Enhanced high-rate charge/discharge capabilities are also achieved for LIB with SP-coated M121 and M23 as cathode materials. This new material and technique for carbon coating is verified to be applicable on different LFP materials. This novel carbon coating method is expected to apply on other cathode materials of LIB with outstanding electrochemical performances.

17.
J Colloid Interface Sci ; 608(Pt 1): 493-503, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626991

RESUMO

Zeolitic imidazolate framework-67 (ZIF67) derivatives are considered as promising active materials for energy storage owing to the possible formation of cobalt oxide and N-doped graphite. Cobalt oxide has multiple redox states for generating redox reactions for charge storage, while N-doped graphite can provide high electrical conductivity for charge transfer. In this study, it is the first time to synthesize binder-free electrodes composed of cobalt oxide and N-doped graphite derived from ZIF67 on carbon cloth (CC) for supercapacitor (SC). Successive oxidation and carbonization along with additional coverage of ZIF67 derivatives are applied to synthesize ZIF67 derivatives composed of cobalt oxide, N-doped graphite and cobalt oxide/N-doped graphite composites with different layer compositions. The highest specific capacitance (CF) of 90.0F/g at 20 mV/s is obtained for the oxidized ZIF67/carbonized ZIF67/carbon cloth (O67/C67/CC) electrode, due to the large surface area and high electrical conductivity benefitted from preferable morphology and growing sequence of Co3O4 and N-doped graphite. The symmetric SC composed of O67/C67/CC electrodes shows the maximum energy density of 2.53 Wh/kg at the power density of 50 W/kg. Cycling stability with CF retention of 70% and Coulombic efficiency of 65% after 6000 times repeatedly charge/discharge process is also obtained for this symmetric SC.

18.
Nanomaterials (Basel) ; 11(11)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34835828

RESUMO

Light-responsive nanocomposites have become increasingly attractive in the biomedical field for antibacterial applications. Visible-light-activated metallic molybdenum disulfide nanosheets (1T-MoS2 NSs) and plasmonic gold nanorods (AuNRs) with absorption at a wavelength of 808 nm were synthesized. AuNR nanocomposites decorated onto 1T-MoS2 NSs (MoS2@AuNRs) were successfully prepared by electrostatic adsorption for phototherapy applications. Based on the photothermal effect, the solution temperature of the MoS2@AuNR nanocomposites increased from 25 to 66.7 °C after 808 nm near-infrared (NIR) laser irradiation for 10 min. For the photodynamic effect, the MoS2@AuNR nanocomposites generated reactive oxygen species (ROS) under visible light irradiation. Photothermal therapy and photodynamic therapy of MoS2@AuNRs were confirmed against E. coli by agar plate counts. Most importantly, the combination of photothermal therapy and photodynamic therapy from the MoS2@AuNR nanocomposites revealed higher antibacterial activity than photothermal or photodynamic therapy alone. The light-activated MoS2@AuNR nanocomposites exhibited a remarkable synergistic effect of photothermal therapy and photodynamic therapy, which provides an alternative approach to fight bacterial infections.

19.
Nanomaterials (Basel) ; 11(11)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34835903

RESUMO

Plasmonic nanomaterials have been intensively explored for applications in biomedical detection and therapy for human sustainability. Herein, plasmonic gold nanoisland (NI) film (AuNIF) was fabricated onto a glass substrate by a facile seed-mediated growth approach. The structure of the tortuous gold NIs of the AuNIF was demonstrated by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Based on the ultraviolet-visible spectrum, the AuNIF revealed plasmonic absorption with maximum intensity at 624 nm. With the change to the surface topography created by the NIs, the capture efficiency of Escherichia coli (E. coli) by the AuNIF was significantly increased compared to that of the glass substrate. The AuNIF was applied as a surface-enhanced Raman scattering (SERS) substrate to enhance the Raman signal of E. coli. Moreover, the plasmonic AuNIF exhibited a superior photothermal effect under irradiation with simulated AM1.5 sunlight. For photothermal therapy, the AuNIF also displayed outstanding efficiency in the photothermal killing of E. coli. Using a combination of SERS detection and photothermal therapy, the AuNIF could be a promising platform for bacterial theranostics.

20.
Int J Nanomedicine ; 16: 5831-5867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475754

RESUMO

Around the globe, surges of bacterial diseases are causing serious health threats and related concerns. Recently, the metal ion release and photodynamic and photothermal effects of nanomaterials were demonstrated to have substantial efficiency in eliminating resistance and surges of bacteria. Nanomaterials with characteristics such as surface plasmonic resonance, photocatalysis, structural complexities, and optical features have been utilized to control metal ion release, generate reactive oxygen species, and produce heat for antibacterial applications. The superior characteristics of nanomaterials present an opportunity to explore and enhance their antibacterial activities leading to clinical applications. In this review, we comprehensively list three different antibacterial mechanisms of metal ion release, photodynamic therapy, and photothermal therapy based on nanomaterials. These three different antibacterial mechanisms are divided into their respective subgroups in accordance with recent achievements, showcasing prospective challenges and opportunities in clinical, environmental, and related fields.


Assuntos
Infecções Bacterianas , Nanoestruturas , Antibacterianos/farmacologia , Bactérias , Humanos , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...