Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(6): 5169-5182, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38261334

RESUMO

Monohydrated uracil (UW) complexes are stabilized by both O⋯HO and NH⋯O hydrogen bonds (H-bonds), simultaneously participating in forming three stable cyclic structures. The role and contribution of these individual H-bonds (O⋯HO and NH⋯O) to the stability of the three UW complexes are still not understood, because of the technical problems in obtaining their optimized structures by standard geometry optimization. The present study explores a non-standard approach to identify three single H-bonded local minima structures without imaginary frequency using DFT (M06-2X, B3LYP and B3LYP-D3), MP2 and CCSD(T) theories and Dunning's correlation-consistent aug-cc-pVTZ basis set, in both vacuum and aqueous media (CPCM method). The results reveal that these new structures are very shallow secondary minima between two deep wells or next to a deep well of primary minima (double H-bonded structures) in the potential energy surface. The H-bond energy of these single H-bonded complexes is found to be less sensitive to a wide range (about 15-20 degrees) of O⋯HO and NH⋯O angles, and the linearity is preferred in the stable three single H-bonded structures. The technical method used to locate such a shallow minimum is described in detail and may be useful for identifying local minima in other cases where consecutive multiple H-bonded structures are global minima. Energy decomposition (using symmetry adapted perturbation theory (SAPT)) of interaction energy, electron redistribution, and relevant vibrational modes are discussed.

2.
Chemistry ; 30(4): e202303207, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37955341

RESUMO

Substituent effects (SEs) are fundamental for predicting molecular reactivity, while polyene, polyyne and acene derivatives are precursors to compounds with diverse applications. Computations were performed for Y-R-X systems, where reaction sites Y=NO2 and O- , substituents X=NO2 , CN, Cl, H, OH, NH2 , and spacers R=polyene, polyyne (n=1-5, 10 repeating units) and acene (up to tetracene). The cSAR (charge of the substituent active region) approach allowed to present, for the first time, quantitative relations describing the spacer's electron-donating and withdrawing properties as a function of n and the spacer type. The electronic properties of the X substituents depend on the type of spacer, its length and the Y group, which is an example of the reverse SE. To describe how the SE between Y and X weakens with n, two approaches were compared: cSAR and SESE (SE stabilization energy). The EDDB (electron density of delocalized bonds) characterize changes in electron delocalization in spacers due to the SE. A new approach - EDDB differential maps - allow to extract the effect of X substitution on the electron delocalization. The charges at spacer's C atoms correlate with cSAR; changes in the slopes confirm the charge transfer by resonance.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36900897

RESUMO

Anthropogenic ecological ecosystems create favourable conditions for the growth of the nitrophilous medicinal species Chelidonium majus in six urban parks in Southern Poland. This study focuses on the concentrations of trace elements in the soils, leaves, stems, and rhizomes of greater celandine. The soil samples were taken only in the humus horizon (A), which averaged approximately 15 cm in thickness under the clumps of Ch. majus. Regarding the reaction, the soil samples tested can be described as slightly acidic (5.6-6.8 in KCl) to alkaline (7.1-7.4 in H2O). Organic carbon content at all sites is high, ranging from 3.2% to 13.6%, while the highest total nitrogen (Nt) content is 0.664%. The average total phosphorus (Pt) content in all samples is 548.8 mg/kg (and its range is 298-940 mg/kg), such values indicating its anthropogenic origin. In terms of heavy metals, Zn has the highest content in the analysed soil samples compared to the other elements, and its range is from 394.50 mg/kg to 1363.80 mg/kg in soil. In rhizomes, Zn also has the highest values (178.7-408.3 mg/kg), whereas, in stems and leaves, it varies (from 80.6 to 227.5 and from 57.8 to 297.4 mg/kg, respectively). Spearman's rank correlation showed high correlations between the content of Pb, Zn, Cd, and As in the soil and rhizomes of Ch. majus. Despite soil contamination with Pb, Cd, and Zn, Ch. majus does not accumulate them in its tissues. However, the translocation of Hg and Cr from rhizomes to leaves was observed. The different concentrations of metals in each park result from the degree of diversity of the parent rocks on which the soil was formed.


Assuntos
Chelidonium , Metais Pesados , Poluentes do Solo , Solo , Ecossistema , Parques Recreativos , Cádmio/análise , Chumbo/análise , Metais Pesados/análise , Poluentes do Solo/análise , Monitoramento Ambiental , China , Medição de Risco
4.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500321

RESUMO

The quality of theoretical NMR shieldings calculated at the quantum-chemical level depends on various theoretical aspects, of which the basis set type and size are among the most important factors. Nevertheless, not much information is available on the basis set effect on theoretical shieldings of the NMR-active nuclei of the third row. Here, we report on the importance of proper basis set selection to obtain accurate and reliable NMR shielding parameters for nuclei from the third row of the periodic table. All calculations were performed on a set of eleven compounds containing the elements Na, Mg, Al, Si, P, S, or Cl. NMR shielding tensors were calculated using the SCF-HF, DFT-B3LYP, and CCSD(T) methods, combined with the Dunning valence aug-cc-pVXZ, core-valence aug-cc-pCVXZ, Jensen polarized-convergent aug-pcSseg-n and Karlsruhe x2c-Def2 basis set families. We also estimated the complete basis set limit (CBS) values of the NMR parameters. Widely scattered nuclear shieldings were observed for the Dunning polarized-valence basis set, which provides irregular convergence. We show that the use of Dunning core-valence or Jensen basis sets effectively reduces the scatter of theoretical NMR results and leads to their exponential-like convergence to CBS. We also assessed the effect of vibrational, temperature, and relativistic corrections on the predicted shieldings. For systems with single bonds, all corrections are relatively small, amounting to less than 4% of the CCSD(T)/CBS value. Vibrational and temperature corrections were less reliable for H3PO and HSiCH due to the high anharmonicity of the molecules. An abnormally high relativistic correction was observed for phosphorus in PN, reaching ~20% of the CCSD(T)/CBS value, while the correction was less than 7% for other tested molecules.


Assuntos
Elétrons , Teoria Quântica , Humanos , Espectroscopia de Ressonância Magnética , Vibração , Fósforo/química
5.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563574

RESUMO

Glass-forming ability is one of the most desired properties of organic compounds dedicated to optoelectronic applications. Therefore, finding general structure-property relationships and other rules governing vitrification and related near-glass-transition phenomena is a burning issue for numerous compound families, such as Schiff bases. Hence, we employ differential scanning calorimetry, broadband dielectric spectroscopy, X-ray diffraction and quantum density functional theory calculations to investigate near-glass-transition phenomena, as well as ambient- and high-pressure molecular dynamics for two structurally related Schiff bases belonging to the family of glycine imino esters. Firstly, the surprising great stability of the supercooled liquid phase is shown for these compounds, also under high-pressure conditions. Secondly, atypical self-organization via bifurcated hydrogen bonds into lasting centrosymmetric dimers is proven. Finally, by comparing the obtained results with the previous report, some general rules that govern ambient- and high-pressure molecular dynamics and near-glass transition phenomena are derived for the family of glycine imino esters. Particularly, we derive a mathematical formula to predict and tune their glass transition temperature (Tg) and its pressure coefficient (dTg/dp). We also show that, surprisingly, despite the presence of intra- and intermolecular hydrogen bonds, van der Waals and dipole-dipole interactions are the main forces governing molecular dynamics and dielectric properties of glycine imino esters.


Assuntos
Bases de Schiff , Vitrificação , Varredura Diferencial de Calorimetria , Glicina , Temperatura de Transição
6.
Food Chem ; 369: 130880, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438344

RESUMO

Theoretical consideration about the impact of methyl groups on the structure and vibrational properties of ß-carotenoids, using medium size molecules of trans-butadiene and trans-isoprene, are reported. Density functional theory (DFT) calculations with correlation-consistent and polarization-consistent basis sets were applied to trans-1,3-butadiene and trans-isoprene as the smallest building bricks of ß-carotenoids. Their structure and harmonic vibrations were estimated in the complete basis set limit (CBS) using the non-linear least square fit. Optimized geometries and harmonic frequencies, obtained with B3LYP and BLYP density functionals and large basis sets, were favorably reproduced by a significantly faster approach, using a recently modified STO(1M)-3G Slater-type basis set. Selected density functionals with STO(1M)-3G and 6-311++G** basis sets were also successful in predicting ß-carotene structures and harmonic vibrations. This work demonstrates the potential applicability of the proposed level of theory for larger molecules, including ß-carotenoids, present in numerous natural food sources. The proposed scheme of molecular modeling, applied to biologically active compounds in food, could provide a deeper insight into their function in vivo, which is directly related to their structure and spectroscopic properties. It could also support the experimental qualitative analysis, based on peak assignment of ß-carotenoids in various food sources.


Assuntos
Butadienos , Vibração , Carotenoides , Hemiterpenos , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
7.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287255

RESUMO

In this work, the nuclear magnetic resonance (NMR) and IR spectroscopic markers of the complexation between 5-fluorouracil (5-FU) and ß-cyclodextrin (ß-CD) in solid state and in aqueous solution are investigated. In the attenuated total reflectance(ATR) spectra of 5-FU/ß-CD products obtained by physical mixing, kneading and co-precipitation, we have identified the two most promising marker bands that could be used to detect complex formations: the C=O and C-F stretching bands of 5-FU that experience a blue shift by ca. 8 and 2 cm-1 upon complexation. The aqueous solutions were studied by NMR spectroscopy. As routine NMR spectra did not show any signs of complexation, we have analyzed the diffusion attenuation of spin-echo signals and the dependence of the population factor of slowly diffusing components on the diffusion time (diffusion NMR of pulsed-field gradient (PFG) NMR). The analysis has revealed that, at each moment, ~60% of 5-FU molecules form a complex with ß-CD and its lifetime is ca. 13.5 ms. It is likely to be an inclusion complex, judging from the independence of the diffusion coefficient of ß-CD on complexation. The obtained results could be important for future attempts of finding better methods of targeted anticancer drug delivery.


Assuntos
Fluoruracila/química , beta-Ciclodextrinas/química , Antineoplásicos/química , Difusão , Sistemas de Liberação de Medicamentos/métodos , Espectroscopia de Ressonância Magnética/métodos , Solubilidade
8.
Molecules ; 25(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872098

RESUMO

We report on the density functional theory (DFT) modelling of structural, energetic and NMR parameters of uracil and its derivatives (5-halogenouracil (5XU), X = F, Cl, Br and I) in vacuum and in water using the polarizable continuum model (PCM) and the solvent model density (SMD) approach. On the basis of the obtained results, we conclude that the intramolecular electrostatic interactions are the main factors governing the stability of the six tautomeric forms of uracil and 5XU. Two indices of aromaticity, the harmonic oscillator model of aromaticity (HOMA), satisfying the geometric criterion, and the nuclear independent chemical shift (NICS), were applied to evaluate the aromaticity of uracil and its derivatives in the gas phase and water. The values of these parameters showed that the most stable tautomer is the least aromatic. A good performance of newly designed xOPBE density functional in combination with both large aug-cc-pVQZ and small STO(1M)-3G basis sets for predicting chemical shifts of uracil and 5-fluorouracil in vacuum and water was observed. As a practical alternative for calculating the chemical shifts of challenging heterocyclic compounds, we also propose B3LYP calculations with small STO(1M)-3G basis set. The indirect spin-spin coupling constants predicted by B3LYP/aug-cc-pVQZ(mixed) method reproduce the experimental data for uracil and 5-fluorouracil well.


Assuntos
Halogênios/química , Espectroscopia de Ressonância Magnética , Uracila/química , Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Solventes/química
9.
Magn Reson Chem ; 58(8): 750-762, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32415997

RESUMO

1 J(15 N,H) coupling constants for enaminones and NH-forms of intramolecularly hydrogen-bonded Schiff bases as model compounds for sp2 -hybridized nitrogen atoms are evaluated using density functional theory (DFT) to find the optimal functionals and basis sets. Ammonia is used as a test molecule and its one-bond coupling constant is compared with experiment. A methylamine Schiff base of a truncated molecule of gossypol is used for checking the performance of selected B3LYP, O3LYP, PBE, BHandH, and APFD density functionals and standard, modified, and dedicated basis sets for coupling constants. Both in vacuum and in chloroform, modeled by the simple continuum model of solvent, the modified basis sets predict significantly better the 1 J(15 N,H) value in ammonia and in the methylamine Schiff base of a truncated molecule of gossypol than the standard basis sets. This procure is then used on a broad set of intramolecularly hydrogen-bonded molecules, and a good correlation between calculated and experimental one-bond NH coupling constants is obtained. The 1 J(15 N,H) couplings are slightly overestimated. The calculated data show for hydrogen-bonded NH interatomic distances that the calculated values depend on the NH bond lengths. The shorter the bond lengths, the larger the 1 J(15 N,H). A useful correlation between 1 J(15 N,H) and NH bond length is derived that enables realistic predictions of one-bond NH coupling constants. The calculations reproduce experimentally observed trends for the studied molecules.

10.
Magn Reson Chem ; 58(6): 584-593, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31912552

RESUMO

The biologically active alkaloid muscimol is present in fly agaric mushroom (Amanita muscaria), and its structure and action is related to human neurotransmitter γ -aminobutyric acid (GABA). The current study reports on determination of muscimol form present in water solution using multinuclear 1 H and 13 C nuclear magnetic resonance (NMR) experiments supported by density functional theory molecular modeling. The structures of three forms of free muscimol molecule both in the gas phase and in the presence of water solvent, modeled by polarized continuous model, and nuclear magnetic isotropic shieldings, the corresponding chemical shifts, and indirect spin-spin coupling constants were calculated. Several J-couplings observed in proton and carbon NMR spectra, not available before, are reported. The obtained experimental spectra, supported by theoretical calculations, favor the zwitterion form of muscimol in water. This structure differs from NH isomer, previously determined in dimethyl sulfoxide (DMSO) solution. In addition, positions of signals C3 and C5 are reversed in both solvents.


Assuntos
Amanita/química , Antagonistas de Receptores de GABA-A/química , Muscimol/química , Água/química , Isótopos de Carbono , Teoria da Densidade Funcional , Antagonistas de Receptores de GABA-A/isolamento & purificação , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Muscimol/isolamento & purificação , Muscimol/farmacologia , Prótons , Receptores de GABA/metabolismo
11.
Magn Reson Chem ; 58(2): 145-153, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31713900

RESUMO

Exponential dependencies between locally calculated geometric and magnetic indexes of aromaticity, harmonic oscillator model of aromaticity (HOMA) and nucleus independent chemical shifts (NICS)(0), NICS(1) and NICS(1)zz, and the number of conjugated benzene rings in linear acenes, from benzene to decacene were observed at B3LYP/6-311+G** level of theory. Correlations between HOMA and NICS indexes showed exponential dependencies and were fitted with simple three-parameter function. Similar correlations between both indexes of aromaticity and proton and carbon nuclear isotropic shieldings of individual acene rings were observed. Contrary to proton data, the predicted 13 C nuclear isotropic shieldings of carbon atoms belonging to inner rings in polyacenes were less shielded, indicating lower aromaticity and therefore, higher reactivity.

12.
J Phys Chem A ; 123(45): 9753-9762, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31622098

RESUMO

Static electric properties, from the dipole moment to the second-hyperpolarizability tensor γ, of the 3-membered, isoelectronic ring molecules, fluorene (FL), carbazole (CR), and dibenzofuran (DBF), have been calculated at various levels of approximation. The electron correlation effects have been included at the coupled-cluster (CC) level, using CCSD and CC2 versions of the method. DFT calculations with the CAM-B3LYP functional have also been performed, and the results are compared to the CC values. The electric property-tailored Pol basis set and its more compact Z3Pol version have been employed in all static calculations. Differences between dipole polarizability values computed at the Pol and Z3Pol bases have been found to be almost negligible. Therefore, all components of the frequency-dependent dipole polarizability tensor α(-ω;ω) have been determined at the CAM-B3LYP/Z3Pol level. Divergence occurring at electronic resonances has been eliminated using the complex polarization propagator (CPP) formalism, explicitly introducing an imaginary iΓ parameter to account approximately for the finite lifetime of the excited state. The imaginary part of the dipole polarizability Im α(-ω;ω) has been calculated for a wide range of external radiation energies up to 10 eV, and its maxima have been compared to the calculated vertical electronic excitation energies.

13.
J Mol Model ; 25(10): 313, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515612

RESUMO

Detailed study of Jensen's polarization-consistent vs. Dunning's correlation-consistent basis set families performance on the extrapolation of raw and counterpoise-corrected interaction energies of water dimer using coupled cluster with single, double, and perturbative correction for connected triple excitations (CCSD(T)) in the complete basis set (CBS) limit are reported. Both 3-parameter exponential and 2-parameter inverse-power fits vs. the cardinal number of basis set, as well as the number of basis functions were analyzed and compared with one of the most extensive CCSD(T) results reported recently. The obtained results for both Jensen- and Dunning-type basis sets underestimate raw interaction energy by less than 0.136 kcal/mol with respect to the reference value of - 4.98065 kcal/mol. The use of counterpoise correction further improves (closer to the reference value) interaction energy. Asymptotic convergence of 3-parameter fitted interaction energy with respect to both cardinal number of basis set and the number of basis functions are closer to the reference value at the CBS limit than other fitting approaches considered here. Separate fits of Hartree-Fock and correlation interaction energy with 3-parameter formula additionally improved the results, and the smallest CBS deviation from the reference value is about 0.001 kcal/mol (underestimated) for CCSD(T)/aug-cc-pVXZ calculations. However, Jensen's basis set underestimates such value to 0.012 kcal/mol. No improvement was observed for using the number of basis functions instead of cardinal number for fitting. Graphical Abstract.

14.
Magn Reson Chem ; 57(8): 489-498, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31013546

RESUMO

Nuclear shieldings and chemical shifts of 5-fluorocytosine (5FC) were predicted in the gas phase and DMSO solution modeled by polarizable continuum model using B3LYP density functional and revised STO(1M)-3G basis set. For comparison, eight arbitrary selected basis sets including STO-3G and medium-size Pople-type and larger dedicated Jensen-type ones were applied. The former basis sets were significantly smaller, but the calculated structural parameters, harmonic vibrational frequencies, were very accurate and close to those obtained with larger, polarization-consistent ones. The predicted 13 C and 1 H chemical shieldings of 5FC and cytosine, selected as parent molecule, were acceptable (root mean square for 13 C chemical shifts in DMSO of about 5 ppm and less) though less accurate than those calculated with large basis sets, dedicated for prediction of nuclear magnetic resonance parameters.

15.
Magn Reson Chem ; 57(7): 359-372, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31034627

RESUMO

We report on nucleus-independent magnetic shielding (NICS) scans over the centers of six- and five-membered rings in selected metal phthalocyanines (MPc) and fullerene C60 for more accurate characterization of local aromaticity in these compounds. Detailed tests were conducted on model aromatic molecules including benzene, pyrrole, indole, isoindole, and carbazole and subsequently applied to H2 Pc, ZnPc, Al(OH)Pc, and CuPc. Similar behavior of three selected magnetic probes, Bq, 3 He, and 7 Li+ , approaching perpendicularly the ring centers, was observed. For better visualization of shielding zone over the centers of aromatic rings, we introduced a simple mathematical procedure: the first and second derivatives of scan curves with respect to magnetic probe position enabled their additional examination. It allowed an easier localization of curve minimum and discrimination between areas in space varying by the magnetic field magnitude and to illustrate local aromaticity of two different kinds of rings in MPc with better resolution. Our results supported earlier reports on very low aromaticity indexes of pyrrole ring incorporated into MPc and significant aromaticity of the central macrocycle. No direct dependence between harmonic oscillator model of aromaticity and NICS was observed. Instead, a correlation between position of scan curve minimum and its magnitude were observed. In addition, the NICS values and 3 He chemical shifts in the middle of neutral C60 and C606- anion agreed well with the reported experimental NMR values for He@C60 and He@C606- .

16.
Magn Reson Chem ; 56(5): 338-351, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29361201

RESUMO

Self-consistent field Hartree-Fock, density functional theory, and coupled-cluster calculations of the nuclear magnetic shielding constants of BH and BH3 molecules have been conducted to characterize the convergence of individual results obtained with correlation-consistent and polarization-consistent basis sets. The individual 11 B and 1 H NMR parameters were estimated in the complete basis set limit and compared with benchmark results. Only the KT3 density functional accurately reproduced 11 B shielding in BH molecule.

17.
Magn Reson Chem ; 56(4): 265-275, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29211311

RESUMO

The role of theory level in prediction of benzene magnetic indexes of aromaticity is analysed and compared with calculated nuclear magnetic shieldings of 3 He used as NMR probe. Three closely related nucleus-independent chemical shift (NICS) based indexes were calculated for benzene at SCF-HF, MP2, and DFT levels of theory and the impact of basis set on these quantities was studied. The changes of benzene NICS(0), NICS(1), and NICS(1)zz parameters calculated using SCF-HF, MP2 and several density functionals were within 1 to 3 ppm. Similar deviations between magnetic indexes of aromaticity were observed for values calculated with selected basis sets. Only very small effect of polar solvent on benzene aromaticity was predicted. The 3 He nuclear magnetic isotropic shielding (σ) and its zz-components (σzz ) of helium atom approaching the centre of benzene ring from above produced similar curves versus benzene-He distance to NICS parameters calculated for similarly moving Bq ghost atom. We also propose an experimental verification of NICS calculations by designing the 3 He NMR measurement for benzene saturated with helium gas or in low temperature matrices.

18.
Phys Chem Chem Phys ; 18(36): 25058-25069, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711454

RESUMO

Structural and selected Raman features of pristine single-walled carbon nanotubes (SWCTNs) with diameters from 0.4 to 1.2 nm and total lengths up to 2.15 nm were studied using the density functional theory (DFT) at the UB3LYP/6-31G* level. Models of different lengths (1, 4, 6 and 10 adjacent bamboo-units) of zigzag (n, 0) SWCNTs, for n ranging from 5 to 15, were studied. Highly systematic changes of individual CC bond lengths and angles along the nanotube axis were observed and described for the longest models. Predicted Raman active radial breathing mode (RBM) vibrational frequencies regularly decreased upon increasing the nanotube diameter and only a negligible effect of the tube length was observed. The changes in calculated RBM frequencies with increasing diameter were close to values estimated using empirical formulas. The experimental G-mode characteristics were reasonably well reproduced using the 4-unit model, especially for tubes with the diameter d > 1 nm. Raman features were also determined for cyclacenes representing the shortest models of SWCNTs. Calculated RBM frequencies of cyclacenes match closely the values for longer SWCNT models but are too inaccurate in the case of the G-mode. For the first time, the Raman properties of SWCNTs were also determined using the Cartesian coordinate tensor (CCT) transfer technique, thus providing reasonable frequencies of Raman active bands for long tubes consisting of 10 bamboo-units.

19.
J Mol Graph Model ; 67: 14-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27155813

RESUMO

(13)C NMR chemical shifts of selected finite-size models of pristine zigzag single walled carbon nanotubes (SWCNTs) with a diameter of ∼0.4-0.8nm and length up to 2.2nm were studied theoretically. Results for finite SWCNTs models containing 1, 4 and 10 adjacent bamboo-type units were compared with data obtained for infinite tubes in order to estimate the reliability of small finite models in predicting magnetic properties of real-size nanotubes and to assess their tube-length dependence. SWCNTs were fully optimized using unrestricted density functional theory (DFT-UB3LYP/6-31G*). Cyclacenes, as the shortest models of open-ended zigzag SWCNTs, with systematically varying diameter were calculated as well. GIAO NMR calculations on the SWCNT and cyclacene models were performed using the BHandH density functional combined with relatively small STO-3Gmag basis set, developed by Leszczynski and coworkers for accurate description of magnetic properties. Regular changes of carbon (13)C chemical shifts along the tube axis of real size (6, 0) and (9, 0) zigzag carbon nanotubes were shown. The (13)C NMR shifts according to increasing diameter calculated for zigzag (n, 0, n=5-10) cyclacenes followed the trends observed for zigzag (n, 0) SWCNTs. The results for 4-units long SWCNTs match reasonably well with the data obtained for infinite zigzag (n, 0) SWCNTs, especially to those with bigger diameter (n=8-15). The presence of rim hydrogens obviously affects theoretical (13)C chemical shieldings and shifts in cyclacenes and thus cyclacenes can provide only approximate estimation of (13)C NMR parameters of real-size SWCNTs. The NMR properties predicted for the longest 10-units long models of SWCNTs reliably correspond to results obtained for infinite nanotubes. They were thus able to accurately predict also recently reported experimental chemical shift of chiral (6, 5) SWCNT.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Modelos Moleculares , Nanotubos de Carbono/química , Teoria Quântica
20.
J Mol Model ; 22(5): 101, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27048200

RESUMO

Detailed density functional theory (DFT) calculations on the structure and harmonic frequencies of model all-trans and all-cis polyenes were undertaken. For the first time, we report on the convergence of selected B3LYP/6-311++G** and BLYP/6-311++G** calculated structural parameters resulting from a systematic increase in polyene size (chains containing 2 to 14 C = C units). The limiting values of the structural parameters for very long chains were estimated using simple three-parameter empirical formulae. BLYP/6-311++G** calculated ν(C = C) and ν(C-C) frequencies for all-trans and all-cis polyenes containing up to 14 carbon-carbon double bonds were used to estimate these values for very long chains. Correction of raw, unscaled vibrational data was performed by comparing theoretical and experimental wavenumbers for polyenes chains containing 3 to 12 conjugated C = C units with both ends substituted by tert-butyl groups. The corrected ν(C = C) and ν(C-C) wavenumbers for all-trans molecules were used to estimate the presence of 9 - 12 C = C units in all-trans polyene pigment in red coral.


Assuntos
Modelos Moleculares , Polienos/química , Teoria Quântica , Vibração , Etilenos/química , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...