Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 287, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934128

RESUMO

Regulated intramembrane proteolysis (RIP) describes the protease-dependent cleavage of transmembrane proteins within the hydrophobic core of cellular membranes. Intramembrane-cleaving proteases (I-CliPs) that catalyze these reactions are found in all kingdoms of life and are involved in a wide range of cellular processes, including signaling and protein homeostasis. I-CLiPs are multispanning membrane proteins and represent challenging targets in structural and enzyme biology. Here we introduce iCLiPSpy, a simple assay to study I-CLiPs in vivo. To allow easy detection of enzyme activity, we developed a heme-binding reporter based on TNFα that changes color after I-CLiP-mediated proteolysis. Co-expression of the protease and reporter in Escherichia coli (E. coli) results in white or green colonies, depending on the activity of the protease. As a proof of concept, we use this assay to study the bacterial intramembrane-cleaving zinc metalloprotease RseP in vivo. iCLiPSpy expands the methodological repertoire for identifying residues important for substrate binding or activity of I-CLiPs and can in principle be adapted to a screening assay for the identification of inhibitors or activators of I-CLiPs, which is of great interest for proteases being explored as biomedical targets.


Assuntos
Proteínas de Escherichia coli , Peptídeo Hidrolases , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Heme/metabolismo
2.
Commun Biol ; 3(1): 73, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060393

RESUMO

Transmembrane signaling proteins play a crucial role in the transduction of information across cell membranes. One function of regulated intramembrane proteolysis (RIP) is the release of signaling factors from transmembrane proteins. To study the role of transmembrane domains (TMDs) in modulating structure and activity of released signaling factors, we purified heterologously expressed human transmembrane proteins and their proteolytic processing products from Escherichia coli. Here we show that CD74 and TNFα are heme binding proteins. Heme coordination depends on both a cysteine residue proximal to the membrane and on the oligomerization of the TMD. Furthermore, we show that the various processing products have different modes of heme coordination. We suggest that RIP changes the mode of heme binding of these proteins and generates heme binding peptides with yet unexplored functions. The identification of a RIP modulated cofactor binding of transmembrane signaling proteins sheds new light on the regulation of cell signaling pathways.


Assuntos
Heme/metabolismo , Proteínas de Membrana/metabolismo , Proteólise , Antígenos de Diferenciação de Linfócitos B/química , Antígenos de Diferenciação de Linfócitos B/metabolismo , Membrana Celular/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Ferro/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/metabolismo
3.
J Biol Chem ; 292(20): 8447-8458, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28356353

RESUMO

In budding yeast (Saccharomyces cerevisiae) the multilayered spindle pole body (SPB) is embedded in the nuclear envelope (NE) at fusion sites of the inner and outer nuclear membrane. The SPB is built from 18 different proteins, including the three integral membrane proteins Mps3, Ndc1, and Mps2. These membrane proteins play an essential role in the insertion of the new SPB into the NE. How the huge core structure of the SPB is anchored in the NE has not been investigated thoroughly until now. The present model suggests that the NE protein Mps2 interacts via Bbp1 with Spc29, one of the coiled-coil proteins forming the central plaque of the SPB. To test this model, we purified and reconstituted the Mps2-Bbp1 complex from yeast and incorporated the complex into liposomes. We also demonstrated that Mps2-Bbp1 directly interacts with Mps3 and Ndc1. We then purified Spc29 and reconstituted the ternary Mps2-Bbp1-Spc29 complex, proving that Bbp1 can simultaneously interact with Mps2 and Spc29 and in this way link the central plaque of the SPB to the nuclear envelope. Interestingly, Bbp1 induced oligomerization of Spc29, which may represent an early step in SPB duplication. Together, this analysis provides important insights into the interaction network that inserts the new SPB into the NE and indicates that the Mps2-Bbp1 complex is the central unit of the SPB membrane anchor.


Assuntos
Complexos Multiproteicos/metabolismo , Membrana Nuclear/metabolismo , Multimerização Proteica/fisiologia , Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/genética , Membrana Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/genética
4.
EMBO J ; 30(16): 3337-52, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21785410

RESUMO

Spindle pole bodies (SPBs), like nuclear pore complexes, are embedded in the nuclear envelope (NE) at sites of fusion of the inner and outer nuclear membranes. A network of interacting proteins is required to insert a cytoplasmic SPB precursor into the NE. A central player of this network is Nbp1 that interacts with the conserved integral membrane protein Ndc1. Here, we establish that Nbp1 is a monotopic membrane protein that is essential for SPB insertion at the inner face of the NE. In vitro and in vivo studies identified an N-terminal amphipathic α-helix of Nbp1 as a membrane-binding element, with crucial functions in SPB duplication. The karyopherin Kap123 binds to a nuclear localization sequence next to this amphipathic α-helix and prevents unspecific tethering of Nbp1 to membranes. After transport into the nucleus, Nbp1 binds to the inner nuclear membrane. These data define the targeting pathway of a SPB component and suggest that the amphipathic α-helix of Nbp1 is important for SPB insertion into the NE from within the nucleus.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas do Citoesqueleto/fisiologia , Membrana Nuclear/metabolismo , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , beta Carioferinas/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Lipossomos/metabolismo , Fusão de Membrana , Dados de Sequência Molecular , Sinais de Localização Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfatidilcolinas/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Relação Estrutura-Atividade , beta Carioferinas/genética
5.
Physiol Plant ; 135(4): 365-78, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19340986

RESUMO

CoA is required for many synthetic and degradative reactions in intermediary metabolism and is the principal acyl carrier in prokaryotic and eukaryotic cells. CoA is synthesized in five steps from pantothenate, and recently, the CoA biosynthetic genes of Arabidopsis have all been identified and characterized. Here, we demonstrate the biochemical and physiological characterization of a pyrophosphatase from Arabidopsis thaliana, called AtCoAse (locus tag At5g45940), cleaving CoA to 4'-phosphopantetheine and 3',5'-adenosine-diphosphate in the presence of Mg2+/Mn2+ ions. The CoA cleaving enzyme isa member of the Nudix hydrolases, pyrophosphatases that hydrolyze nucleoside diphosphates, already described as CoAse and now further characterized in detail by us. Mutagenesis of residues of the so-called Nudix and NuCoA motifs drastically reduced the hydrolase activity. AtCoAse is not absolute specific for CoA, and in the presence of Mn2+ ions, a minor hydrolyzing activity was observed with NADH as substrate. The AtCoAse expression is ubiquitous, strongly in flower and unaffected by abiotic stress. The immunohistochemical localization indicates that the AtCoAse protein is observed in the cytoplasm of distinct cells types from different heterotrophic Arabidopsis tissues, mainly restricted to the vascular elements of the root and shoot and in flower and developing embryo. Transgenic Arabidopsis plants, with increased AtCoAse expression, show altered growth rates and development, expanding their live cycle far away from the wild-type.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Coenzima A/metabolismo , Pirofosfatases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Pirofosfatases/genética , Pirofosfatases/isolamento & purificação , RNA de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Nudix Hidrolases
6.
J Biol Chem ; 281(9): 5435-44, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16371361

RESUMO

Coenzyme A as the principal acyl carrier is required for many synthetic and degradative reactions in intermediary metabolism. It is synthesized in five steps from pantothenate, and recently the CoaA biosynthetic genes of eubacteria, plants, and human were all identified and cloned. In most bacteria, the so-called Dfp proteins catalyze the synthesis of the coenzyme A precursor 4'-phosphopantetheine. Dfp proteins are bifunctional enzymes catalyzing the synthesis of 4'-phosphopantothenoylcysteine (CoaB activity) and its decarboxylation to 4'-phosphopantetheine (CoaC activity). Here, we demonstrate the functional characterization of the CoaB and CoaC domains of an archaebacterial Dfp protein. Both domains of the Methanocaldococcus jannaschii Dfp protein were purified as His tag proteins, and their enzymatic activities were then identified and characterized by site-directed mutagenesis. Although the nucleotide binding motif II of the CoaB domain resembles that of eukaryotic enzymes, Methanocaldococcus CoaB is a CTP- and not an ATP-dependent enzyme, as shown by detection of the 4'-phosphopantothenoyl-CMP intermediate. The proposed 4'-phosphopantothenoylcysteine binding clamp of the Methanocaldococcus CoaC activity differs significantly from those of other characterized CoaC proteins. In particular, the active site cysteine residue, which otherwise is involved in the reduction of an aminoenethiol reaction intermediate, is not present. Moreover, the conserved Asn residue of the PXMNXXMW motif, which contacts the carboxyl group of 4'-phosphopantothenoylcysteine, is exchanged for His.


Assuntos
Proteínas Arqueais/metabolismo , Carboxiliases/metabolismo , Methanococcales/metabolismo , Complexos Multienzimáticos , Panteteína/análogos & derivados , Peptídeo Sintases/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sequência de Bases , Sítios de Ligação , Carboxiliases/química , Carboxiliases/genética , Clonagem Molecular , Humanos , Dados de Sequência Molecular , Estrutura Molecular , Panteteína/metabolismo , Peptídeo Sintases/química , Peptídeo Sintases/genética , Alinhamento de Sequência
7.
Structure ; 12(11): 1977-88, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15530362

RESUMO

Phosphopantothenoylcysteine (PPC) synthetase forms a peptide bond between 4'-phosphopantothenate and cysteine in coenzyme A biosynthesis. PPC synthetases fall into two classes: eukaryotic, ATP-dependent and eubacterial, CTP-dependent enzymes. We describe the first crystal structure of E. coli PPC synthetase as a prototype of bacterial, CTP-dependent PPC synthetases. Structures of the apo-form and the synthetase complexed with CTP, the activated acyl-intermediate, 4'-phosphopantothenoyl-CMP, and with the reaction product CMP provide snapshots along the reaction pathway and detailed insight into substrate binding and the reaction mechanism of peptide bond formation. Binding of the phosphopantothenate moiety of the acyl-intermediate in a cleft at the C-terminal end of the central beta sheet of the dinucleotide binding fold is accomplished by an otherwise flexible flap. A second disordered loop may control access of cysteine to the active site. The conservation of functionalities involved in substrate binding and catalysis provides insight into similarities and differences of prokaryotic and eukaryotic PPC synthetases.


Assuntos
Coenzima A/biossíntese , Citidina Trifosfato/metabolismo , Escherichia coli/enzimologia , Peptídeo Sintases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Coenzima A/química , Cristalização , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
8.
Eur J Biochem ; 271(1): 163-72, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14686929

RESUMO

In bacteria, coenzyme A is synthesized in five steps from d-pantothenate. The Dfp flavoprotein catalyzes the synthesis of the coenzyme A precursor 4'-phosphopantetheine from 4'-phosphopantothenate and cysteine using the cofactors CTP and flavine mononucleotide via the phosphopeptide-like compound 4'-phosphopantothenoylcysteine. The synthesis of 4'-phosphopantothenoylcysteine is catalyzed by the C-terminal CoaB domain of Dfp and occurs via the acyl-cytidylate intermediate 4'-phosphopantothenoyl-CMP in two half reactions. In this new study, the molecular characterization of the CoaB domain is continued. In addition to the recently described residue Asn210, two more active-site residues, Arg206 and Ala276, were identified and shown to be involved in the second half reaction of the (R)-4'-phospho-N-pantothenoylcysteine synthetase. The proposed intermediate of the (R)-4'-phospho-N-pantothenoylcysteine synthetase reaction, 4'-phosphopantothenoyl-CMP, was characterized by MALDI-TOF MS and it was shown that the intermediate is copurified with the mutant His-CoaB N210H/K proteins. Therefore, His-CoaB N210H and His-CoaB N210K will be of interest to elucidate the crystal structure of CoaB complexed with the reaction intermediate. Wild-type His-CoaB is not absolutely specific for cysteine and can couple derivatives of cysteine to 4'-phosphopantothenate. However, no phosphopeptide-like structure is formed with serine. Molecular characterization of the temperature-sensitive Escherichia coli dfp-1 mutant revealed that the residue adjacent to Ala276, Ala275 of the strictly conserved AAVAD(275-279) motif, is exchanged for Thr.


Assuntos
Escherichia coli/enzimologia , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , Primers do DNA , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Peptídeo Sintases/genética , Reação em Cadeia da Polimerase , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
9.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 8): 1414-21, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12876343

RESUMO

MrsD from Bacillus sp. HIL-Y85/54728 is a member of the HFCD (homo-oligomeric flavin-containing Cys decarboxylases) family of flavoproteins and is involved in the biosynthesis of the lantibiotic mersacidin. It catalyses the oxidative decarboxylation of the C-terminal cysteine residue of the MrsA precursor peptide of mersacidin, yielding a (Z)-enethiol intermediate as the first step in the formation of the unusual amino acid S-[(Z)-2-aminovinyl]-methyl-D-cysteine. Surprisingly, MrsD was found to bind FAD, in contrast to the three other characterized members of the HFCD family, which bind FMN. To determine the molecular discriminators of FAD binding within the HFCD family, the crystal structure of MrsD was analyzed at a resolution of 2.54 A. Crystals of space group F432 contain one MrsD monomer in the asymmetric unit. However, a Patterson search with EpiD-derived models failed. Based on the consideration that the dodecameric MrsD particle of tetrahedral symmetry resembles the quaternary structure of EpiD, rotational and translational parameters were derived from the geometric consideration that the MrsD dodecamer is generated from a monomer by crystallographic symmetry around the position (1/4, 1/4, 1/4) of the unit cell. A structural comparison with the FMN-binding members of the HFCD family EpiD and AtHAL3a shows conserved sequence motifs in contact with the flavin's pyrimidine ring but divergent environments for the dimethylbenzene ring of the isoalloxazine moiety. The position of the ribityl chain differs in MrsD from that found in EpiD and AtHAL3a. However, the FMN-phosphate binding sites are also highly conserved in their exact positions. In all three cases, the flavin cofactor is bound to a structurally conserved region of the Rossmann-fold monomer, exposing its Re side for catalysis. The adenosyl phosphate of FAD is anchored in a well defined binding site and the adenosine moieties are oriented towards the interior of the hollow particle, where three of them pack against each other around the threefold axis of a trimeric facet.


Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Flavina-Adenina Dinucleotídeo/química , Flavoproteínas/química , Bacteriocinas , Sítios de Ligação , Catálise , Cristalografia por Raios X , Cisteína/química , Elétrons , Escherichia coli/metabolismo , Flavinas/química , Modelos Químicos , Modelos Moleculares , Oxigênio/metabolismo , Peptídeos/química , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
10.
J Biol Chem ; 278(40): 38229-37, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12860978

RESUMO

Coenzyme A is required for many synthetic and degradative reactions in intermediary metabolism and is the principal acyl carrier in prokaryotic and eukaryotic cells. Coenzyme A is synthesized in five steps from pantothenate, and recently the CoaA biosynthetic genes in bacteria and human have all been identified and characterized. Coenzyme A biosynthesis in plants is not fully understood, and to date only the AtHAL3a (AtCoaC) gene of Arabidopsis thaliana has been cloned and identified as 4'-phosphopantothenoylcysteine (PPC) decarboxylase (Kupke, T., Hernández-Acosta, P., Steinbacher, S., and Culiáñez-Macià, F. A. (2001) J. Biol. Chem. 276, 19190-19196). Here, we demonstrate the cloning of the four missing genes, purification of the enzymes, and identification of their functions. In contrast to bacterial PPC synthetases, the plant synthetase is not CTP-but ATP-dependent. The complete biosynthetic pathway from pantothenate to coenzyme A was reconstituted in vitro by adding the enzymes pantothenate kinase (AtCoaA), 4'-phosphopantothenoylcysteine synthetase (AtCoaB), 4'-phosphopantothenoylcysteine decarboxylase (AtCoaC), 4'-phosphopantetheine adenylyltransferase (AtCoaD), and dephospho-coenzyme A kinase (AtCoaE) to a mixture containing pantothenate, cysteine, ATP, dithiothreitol, and Mg2+.


Assuntos
Arabidopsis/química , Arabidopsis/genética , Coenzima A/biossíntese , Nucleotidiltransferases/química , Panteteína/análogos & derivados , Panteteína/química , Plantas/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Fenômenos Bioquímicos , Bioquímica , Linhagem Celular , Clonagem Molecular , Cisteína/química , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Genoma de Planta , Magnésio/química , Modelos Químicos , Dados de Sequência Molecular , Nucleotidiltransferases/genética , Nucleotidiltransferases/isolamento & purificação , Osmose , Proteínas Recombinantes de Fusão/química , Homologia de Sequência de Aminoácidos , Fatores de Tempo
11.
J Mol Biol ; 327(1): 193-202, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12614618

RESUMO

The Arabidopsis thaliana protein AtHAL3a decarboxylates 4'-phosphopantothenoylcysteine to 4'-phosphopantetheine, a step in coenzyme A biosynthesis. Surprisingly, this decarboxylation reaction is carried out as an FMN-dependent redox reaction. In the first half-reaction, the side-chain of the cysteine residue of 4'-phosphopantothenoylcysteine is oxidised and the thioaldehyde intermediate decarboxylates spontaneously to the 4'-phosphopantothenoyl-aminoethenethiol intermediate. In the second half-reaction this compound is reduced to 4'-phosphopantetheine and the FMNH(2) cofactor is re-oxidised. The active site mutant C175S is unable to perform this reductive half-reaction. Here, we present the crystal structure of the AtHAL3a mutant C175S in complex with the reaction intermediate pantothenoyl-aminoethenethiol and FMNH(2). The geometry of binding suggests that reduction of the C(alpha)=C(beta) double bond of the intermediate can be performed by direct hydride-transfer from N5 of FMNH(2) to C(beta) of the aminoethenethiol-moiety supported by a protonation of C(alpha) by Cys175. The binding mode of the substrate is very similar to that previously observed for a pentapeptide to the homologous enzyme EpiD that introduces the aminoethenethiol-moiety as final reaction product at the C terminus of peptidyl-cysteine residues. This finding further supports our view that these homologous enzymes form a protein family of homo-oligomeric flavin-containing cysteine decarboxylases, which we have termed HFCD family.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Compostos de Sulfidrila/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Carboxiliases/química , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Oxirredutases/química , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato
12.
Rapid Commun Mass Spectrom ; 16(18): 1779-84, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12207367

RESUMO

The microbial flavoenzyme EpiD catalyzes the oxidative decarboxylation of peptidyl-cysteines to peptidyl-aminoenethiols. These unusual C-terminally modified peptides are intermediates in the biosynthesis of the tetracyclic peptide antibiotic epidermin, which belongs to the lantibiotics family. The peptide SFNSYCC represents the C-terminal partial sequence of the natural precursor peptide EpiA. EpiA is posttranslationally modified to form finally the lantibiotic epidermin. The substrate specificity of EpiD was investigated using high-resolution mass spectrometry and the heptapeptide library SFNSXCC. The enzymatic conversion of particular peptides can be observed by a mass loss of m/z 46. In contrast to the previously used triple quadrupole instrument, electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) was able to resolve and detect all precursor and converted peptides with identical nominal masses in a single measurement, avoiding the necessity to investigate single peptides. Furthermore, a new substrate SFNSCCC of the enzyme EpiD was detected within the reaction mixture.


Assuntos
Carboxiliases , Oxirredutases/metabolismo , Staphylococcus epidermidis/enzimologia , Ciclotrons , Análise de Fourier , Oxirredutases/análise , Biblioteca de Peptídeos , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato
13.
J Biol Chem ; 277(39): 36137-45, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12140293

RESUMO

In bacteria, coenzyme A is synthesized in five steps from pantothenate. The flavoprotein Dfp catalyzes the synthesis of the coenzyme A precursor 4'-phosphopantetheine in the presence of 4'-phosphopantothenate, cysteine, CTP, and Mg(2+) (Strauss, E., Kinsland, C., Ge, Y., McLafferty, F. W., and Begley, T. P. (2001) J. Biol. Chem. 276, 13513-13516). It has been shown that the NH(2)-terminal domain of Dfp has 4'-phosphopantothenoylcysteine decarboxylase activity (Kupke, T., Uebele, M., Schmid, D., Jung, G., Blaesse, M., and Steinbacher, S. (2000) J. Biol. Chem. 275, 31838-31846). Here I demonstrate that the COOH-terminal CoaB domain of Dfp catalyzes the synthesis of 4'-phosphopantothenoylcysteine. The exchange of conserved amino acid residues within the CoaB domain revealed that the synthesis of 4'-phosphopantothenoylcysteine occurs in two half-reactions. Using the mutant protein His-CoaB N210D the putative acyl-cytidylate intermediate of 4'-phosphopantothenate was detectable. The same intermediate was detectable for the wild-type CoaB enzyme if cysteine was omitted in the reaction mixture. Exchange of the conserved Lys(289) residue, which is part of the strictly conserved (289)KXKK(292) motif of the CoaB domain, resulted in complete loss of activity with neither the acyl-cytidylate intermediate nor 4'-phosphopantothenoylcysteine being detectable. Gel filtration experiments indicated that CoaB forms dimers. Residues that are important for dimerization are conserved in CoaB proteins from eubacteria, Archaea, and eukaryotes.


Assuntos
Peptídeo Sintases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Catálise , Cromatografia em Gel , Clonagem Molecular , Coenzima A/química , Dimerização , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Histidina/metabolismo , Lisina/química , Modelos Químicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Peptídeo Sintases/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
14.
J Biol Chem ; 277(23): 20490-8, 2002 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-11923307

RESUMO

The Arabidopsis thaliana flavoprotein AtHAL3a, which is linked to plant growth and salt and osmotic tolerance, catalyzes the decarboxylation of 4'-phosphopantothenoylcysteine to 4'-phosphopantetheine, a key step in coenzyme A biosynthesis. AtHAL3a is similar in sequence and structure to the LanD enzymes EpiD and MrsD, which catalyze the oxidative decarboxylation of peptidylcysteines. Therefore, we hypothesized that the decarboxylation of 4'-phosphopantothenoylcysteine also occurs via an oxidatively decarboxylated intermediate containing an aminoenethiol group. A set of AtHAL3a mutants were analyzed to detect such an intermediate. By exchanging Lys(34), we found that AtHAL3a is not only able to decarboxylate 4'-phosphopantothenoylcysteine but also pantothenoylcysteine to pantothenoylcysteamine. Exchanging residues within the substrate binding clamp of AtHAL3a (for example of Gly(179)) enabled the detection of the proposed aminoenethiol intermediate when pantothenoylcysteine was used as substrate. This intermediate was characterized by its high absorbance at 260 and 280 nm, and the removal of two hydrogen atoms and one molecule of CO(2) was confirmed by ultrahigh resolution mass spectrometry. Using the mutant AtHAL3a C175S enzyme, the product pantothenoylcysteamine was not detectable; however, oxidatively decarboxylated pantothenoylcysteine could be identified. This result indicates that reduction of the aminoenethiol intermediate depends on a redox-active cysteine residue in AtHAL3a.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/metabolismo , Carboxiliases/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/enzimologia , Sequência de Bases , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Especificidade por Substrato
15.
J Bacteriol ; 184(5): 1234-43, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11844751

RESUMO

The lantibiotic mersacidin inhibits peptidoglycan biosynthesis by binding to the peptidoglycan precursor lipid II. Mersacidin contains an unsaturated thioether bridge, which is proposed to be synthesized by posttranslational modifications of threonine residue +15 and the COOH-terminal cysteine residue of the mersacidin precursor peptide MrsA. We show that the flavoprotein MrsD catalyzes the oxidative decarboxylation of the COOH-terminal cysteine residue of MrsA to an aminoenethiol residue. MrsD belongs to the recently described family of homo-oligomeric flavin-containing Cys decarboxylases (i.e., the HFCD protein family). Members of this protein family include the bacterial Dfp proteins (which are involved in coenzyme A biosynthesis), eukaryotic salt tolerance proteins, and further oxidative decarboxylases such as EpiD. In contrast to EpiD and Dfp, MrsD is a FAD and not an FMN-dependent flavoprotein. HFCD enzymes are characterized by a conserved His residue which is part of the active site. Exchange of this His residue for Asn led to inactivation of MrsD. The lantibiotic-synthesizing enzymes EpiD and MrsD have different substrate specificities.


Assuntos
Antibacterianos/biossíntese , Carboxiliases/metabolismo , Flavoproteínas/metabolismo , Peptidoglicano/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas , Carboxiliases/genética , Carboxiliases/isolamento & purificação , Catálise , Escherichia coli/enzimologia , Escherichia coli/genética , Flavoproteínas/genética , Flavoproteínas/isolamento & purificação , Espectrometria de Massas/métodos , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Peptídeos/metabolismo , Precursores de Proteínas/metabolismo , Especificidade por Substrato
16.
Clin Neuropsychol ; 7(2): 210-214, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29022473

RESUMO

In this study we examined the influence of lateralized brain lesions on Mini-Mental State Examination (MMSE) performance using the psychometric concepts of intercept and slope bias. Four patient groups of elderly males (normal control, right-hemisphere stroke, left-hemisphere stroke, and dementia) were studied. Right-and left-hemisphere stroke groups were equated for global level of neuropsychological impairment independently of their MMSE performances. Results indicated that the right-hemisphere stroke patients' MMSE scores did not differ from those of controls but were significantly superior to the left-hemisphere stroke and dementia patients' MMSE performances. Additionally, correlations between the MMSE and three neuropsychological composite measures assessing global, verbal, and nonverbal skills, demonstrated poor correspondence among patients with lateralized lesions, especially those with right-hemisphere brain dysfunction. Results are interpreted as supporting the presence of both intercept and slope bias when the MMSE is used with patients having unilateral lesions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...