Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(5): e2305395, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38093508

RESUMO

Ultrasonic mixing is a well-established method to disperse and mix substances. However, the effects of ultrasound on dispersed soft particles as well as on their adsorption kinetics at interfaces remain unexplored. Ultrasound not only accelerates the movement of particles via acoustic streaming, but recent research indicates that it can also manipulate the interaction of soft particles with the surrounding liquid. In this study, it evaluates the adsorption kinetics of microgel at the water-oil interface under the influence of ultrasound. It quantifies how acoustic streaming accelerates the reduction of interfacial tension. It uses high-frequency and low-amplitude ultrasound, which has no destructive effects. Furthermore, it discusses the ultrasound-induced shrinking and thus interfacial rearrangement of the microgels, which plays a secondary but non-negligible role on interfacial tension reduction. It shows that the decrease in interfacial tension due to the acoustic streaming is stronger for microgels with higher cross-linker density. Moreover, it shows that ultrasound can induce a reversible decrease in interfacial tension due to the shrinkage of microgels at the interface. The presented results may lead to a better understanding in any field where ultrasonic waves meet soft particles, e.g., controlled destabilization in foams and emulsions or systems for drug release.

2.
Gels ; 8(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36286129

RESUMO

As a novel stimulus, we use high-frequency ultrasonic waves to provide the required energy for breaking hydrogen bonds between Poly(N-isopropylacrylamide) (PNIPAM) and water molecules while the solution temperature is maintained below the volume phase transition temperature (VPTT = 32 °C). Ultrasonic waves propagate through the solution and their energy will be absorbed due to the liquid viscosity. The absorbed energy partially leads to the generation of a streaming flow and the rest will be spent to break the hydrogen bonds. Therefore, the microgels collapse and become insoluble in water and agglomerate, resulting in solution turbidity. We use turbidity to quantify the ultrasound energy absorption and show that the acousto-response of PNIPAM microgels is a temporal phenomenon that depends on the duration of the actuation. Increasing the solution concentration leads to a faster turbidity evolution. Furthermore, an increase in ultrasound frequency leads to an increase in the breakage of more hydrogen bonds within a certain time and thus faster turbidity evolution. This is due to the increase in ultrasound energy absorption by liquids at higher frequencies.

3.
Micromachines (Basel) ; 13(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35630143

RESUMO

Capacitive micromachined ultrasonic transducers (CMUTs) represent an accepted technology for ultrasonic transducers, while high bias voltage requirements and limited output pressure still need to be addressed. In this paper, we present a design for ultra-low-voltage operation with enhanced output pressure. Low voltages allow for good integrability and mobile applications, whereas higher output pressures improve the penetration depth and signal-to-noise ratio. The CMUT introduced has an ultra-thin gap (120 nm), small plate thickness (800 nm), and is supported by a non-flexural piston, stiffening the topside for improved average displacement, and thus higher output pressure. Three designs for low MHz operation are simulated and fabricated for comparison: bare plate, plate with small piston (34% plate coverage), and big piston (57%). The impact of the piston on the plate mechanics in terms of resonance and pull-in voltage are simulated with finite element method (FEM). Simulations are in good agreement with laser Doppler vibrometer and LCR-meter measurements. Further, the sound pressure output is characterized in immersion with a hydrophone. Pull-in voltages range from only 7.4 V to 25.0 V. Measurements in immersion with a pulse at 80% of the pull-in voltage present surface output pressures from 44.7 kPa to 502.1 kPa at 3.3 MHz to 4.2 MHz with a fractional bandwidth of up to 135%. This leads to an improvement in transmit sensitivity in pulsed (non-harmonic) driving from 7.8 kPa/V up to 24.8 kPa/V.

4.
J Acoust Soc Am ; 150(5): 3228, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34852580

RESUMO

Waveguides allow grating lobe free beamforming for air-coupled ultrasonic phased-arrays by reducing the effective inter-element spacing to half wavelength. Since the sound waves propagate through the waveguide ducts, additional time delays are introduced. In this work, we present analytical, numerical, and experimental methods to estimate these time delays. Afterwards, two different waveguides are compared. The first one consists of equal-length ducts, requiring a time-consuming assembly process of the ultrasonic phased-array. In contrast, the second waveguide consists of Bézier-shaped ducts of unequal lengths but a planar input port allowing fast assembly. The analytical model is based on the geometric lengths of the waveguide ducts. The numerical model relies on a transient finite element analysis. All simulations are validated in an anechoic chamber using a calibrated microphone. The analytical (7.6% deviation) and numerical (3.2% deviation) propagation time models are in good agreement with the measurements. By using the analyzed propagation times for the compensation of the unequal waveguide duct lengths, we restored the beamforming capability without significant sound pressure level (SPL) loss. This work shows the possibility of reduced transducer assembly time for waveguided air-coupled phased-arrays without a reduced SPL.

5.
Polymers (Basel) ; 13(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34771310

RESUMO

Piezoelectrets are artificial ferroelectrics that are produced from non-polar air-filled porous polymers by symmetry breaking through high-voltage-induced Paschen breakdown in air. A new strategy for three-layer polymer sandwiches is introduced by separating the electrical from the mechanical response. A 3D-printed grid of periodically spaced thermoplastic polyurethane (TPU) spacers and air channels was sandwiched between two thin fluoroethylene propylene (FEP) films. After corona charging, the air-filled sections acted as electroactive elements, while the ultra-soft TPU sections determined the mechanical stiffness. Due to the ultra-soft TPU sections, very high quasi-static (22,000 pC N-1) and dynamic (7500 pC N-1) d33 coefficients were achieved. The isothermal stability of the d33 coefficients showed a strong dependence on poling temperature. Furthermore, the thermally stimulated discharge currents revealed well-known instability of positive charge carriers in FEP, thereby offering the possibility of stabilization by high-temperature poling. The dependences of the dynamic d33 coefficient on seismic mass and acceleration showed high coefficients, even at accelerations approaching that of gravity. An advanced analytical model rationalizes the magnitude of the obtained quasi-static d33 coefficients of the suggested structure indicating a potential for further optimization.

6.
Langmuir ; 37(19): 5854-5863, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33961436

RESUMO

Ultrasound propagation in liquids is highly influenced by its attenuation due to viscous damping. The dissipated energy will be partially absorbed by the liquid due to its dynamic viscosity as well as its bulk viscosity. The former results in the generation of a flow that is called acoustic streaming, and the latter is associated with the vibrational and rotational relaxation of liquid molecules. Measuring the ultrasonic wave attenuation due to the bulk viscosity is presented as a novel method in this article. Poly(N-isopropylacrylamide) (PNIPAM) microgels, which are soluble in several solvents such as water, were used as acousto-responsive markers in water, which upon absorption of ultrasonic energy undergo a volume phase transition due to the breakage of their hydrogen bonds. Thus, they become insoluble in water, and due to shrinking, their optical density increases. As a result, their agglomeration can be seen as a turbid medium. We managed to visualize the ultrasonic energy absorption due to the bulk viscosity using the turbidity since the excess acoustic energy on top of the absorbed energy for the translational motion of liquid is spent to break the hydrogen bonds between PNIPAM and water. In addition, to quantify the turbidity phenomenon, the total energy required for breaking hydrogen bonds in the solution is calculated, and its evolution, according to the input power intensity, is quantified by image processing. The effect of viscosity by changing the microgel concentration was investigated, and it is shown that an increasing microgel concentration increases the acoustic energy absorption rate much greater than its dynamic viscosity. Therefore, the bulk viscosity, as the responsible parameter for this increase, is measured directly from the energy of broken hydrogen bonds. The results show that at low solution concentration (0.2 wt %) the bulk viscosity is in the same order of magnitude as its dynamic viscosity. Increasing the concentrations to 1 and 5 wt % increases the bulk viscosity and consequently the structural relaxation time by 1 and 2 orders of magnitude, respectively.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32746193

RESUMO

We present an air-coupled ultrasonic imaging system based on a 40-kHz 8×8 phased-array for 3-D real-time localization of multiple objects in the far-field. By attaching a waveguide to the array, the effective interelement spacing is reduced to half wavelength. This enables grating lobe-free transmit and receive beamforming with a uniform rectangular array of efficient low-cost transducers. The system further includes custom transceiver electronics, an field programmable gate array (FPGA) system-on-chip and a PC for GPU accelerated frequency domain signal processing, consisting of matched filtering, conventional beamforming, and envelope extraction using Nvidia Compute Unified Device Architecture (CUDA) and OpenGL for visualization. The uniform rectangular layout allows utilizing multiple transmit and receive methods, known from medical imaging applications. Thus, the system is dynamically adaptable to maximize the frame rate or detection range. One implemented method demonstrates the real-time capability by transmitting a hemispherical pulse (HP) with a single transducer to irradiate the surroundings simultaneously, whereas all transducers are used for echo reception. The imaging properties, such as axial and lateral resolution, field of view and range of view, are characterized in an anechoic chamber. The object localization is validated for a horizontal and vertical field of view of ±80° and a range of view of 0.5-3 m with 29 frames/s. Using the same system, a comparison between the HP method and the dynamic transmit beamforming method, which transmits multiple sequential beamformed pulses for long-range localization, is provided.

8.
J Acoust Soc Am ; 147(5): EL421, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32486787

RESUMO

Advanced acoustic levitation devices featuring flexible, lightweight, wide bandwidth, and film-like transducers based on ferroelectrets are designed and fabricated for sophisticated manipulation of particles in a simple way. Owing to the unique properties of ferroelectret films, such as high piezoelectric activity, very small acoustic impedance, a relatively large damping ratio, flexibility, a large area, and small density, the levitator reported features a wider bandwidth compared to ceramic-based levitators. The transportation of levitated particles is achieved by deformation of the film transducer, which represents a different and promising concept for this task.

9.
J Rehabil Assist Technol Eng ; 7: 2055668320918130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435506

RESUMO

Despite limited scientific evidence, there is an increasing interest in soft robotic gloves to optimize hand- and finger-related functional abilities following a neurological event. This review maps evidence on the effects and effectiveness of soft robotic gloves for hand rehabilitation and, whenever possible, patients' satisfaction. A systematized search of the literature was conducted using keywords structured around three areas: technology attributes, anatomy, and rehabilitation. A total of 272 titles, abstracts, and keywords were initially retrieved, and data were extracted out of 13 articles. Six articles investigated the effects of wearing a soft robotic glove and eight studied the effect or effectiveness of an intervention with it. Some statistically significant and meaningful beneficial effects were confirmed with the 29 outcome measures used. Finally, 11 articles also confirmed users' satisfaction with regard to the soft robotic glove, while some articles also noticed an increased engagement in the rehabilitation program with this technology. Despite the heterogeneity across studies, soft robotic gloves stand out as a safe and promising technology to improve hand- and finger-related dexterity and functional performance. However, strengthened evidence of the effects or effectiveness of such devices is needed before their transition from laboratory to clinical practice.

10.
IEEE Int Conf Rehabil Robot ; 2019: 1121-1126, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374780

RESUMO

Functional impairment of the hand, for example after a stroke, can be partially improved by intensive training. This is currently done by physiotherapy and the optimal intensity of hand rehabilitation programs is usually not reached due to a lack in human resources (high costs) and patients fatigue. In this work a cost-effective soft exosuit to support the hand's grasping function is presented. The system is based on tendon-like wires and all fingers except the little finger are actuated. Each of the remaining four fingers is bidirectionally controlled by an electrical motor. This allows a variety of gripping situations, e.g. a power or precision grip. Our prototype weighs 435g, including the battery and can be worn on the upper arm. The force applicable for a power grip exceeds 20N with a maximum gripping frequency of 4Hz. Furthermore, a force control is implemented, giving the wearer the opportunity to grab sensitive objects. All components used are available in different sizes, allowing a quick and individual preparation per patient. Therefore, our prototype can be used for rehabilitation while doing activities of daily living (ADL) starting on the day of the injury.


Assuntos
Mãos/fisiologia , Dispositivos Eletrônicos Vestíveis , Atividades Cotidianas , Braço/fisiologia , Eletromiografia , Dedos/fisiologia , Força da Mão , Humanos , Reabilitação
11.
Artigo em Inglês | MEDLINE | ID: mdl-31265388

RESUMO

High sensitivity is an important requirement for air-coupled ultrasonic sensors applied to materials testing. With a lower acoustic impedance than any piezoelectric material, charged cellular polypropylene (PP) offers better matching to air with a similar piezoelectric coefficient. The piezoelectric properties of charged cellular PP originate from their polarization, creating permanent internal voltage. The sensitivity of the sensor can be increased by applying additional dc bias voltage, as it has been done already for transmitters. This work presents the first ultrasonic sensor based on charged cellular PP including a high-voltage module providing dc bias voltage up to 2 kV. This bias voltage led to an increase in the signal-to-noise ratio of up to 15 ± 1 dB. The measurement of the received signal depending on the applied bias voltage is proposed as a new method of determining the internal voltage of ferroelectrets. The sensor combined with a cellular PP transmitter was applied to nondestructive testing of a rotor blade segment and glued-laminated timber, enabling imaging of the internal structure of these specimens with a thickness around 4 cm.

12.
Int J Med Robot ; 14(1)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28804993

RESUMO

BACKGROUND: Impairment of haptic perception by surgical gloves could reduce requirements on haptic systems for surgery. While grip forces and manipulation capabilities were not impaired in previous studies, no data is available for perception thresholds. METHODS: Absolute and differential thresholds (20 dB above threshold) of 24 subjects were measured for frequencies of 25 and 250 Hz with a Ψ-method. Effects of wearing a surgical glove, moisture on the contact surface and subject's experience with gloves were incorporated in a full-factorial experimental design. RESULTS: Absolute thresholds of 12.8 dB and -29.6 dB (means for 25 and 250 Hz, respectively) and differential thresholds of -12.6 dB and -9.5 dB agree with previous studies. A relevant effect of the frequency on absolute thresholds was found. Comparisons of glove- and no-glove-conditions did not reveal a significant mean difference. CONCLUSIONS: Wearing a single surgical glove does not affect absolute and differential haptic perception thresholds.


Assuntos
Luvas Cirúrgicas , Força da Mão , Percepção do Tato , Adulto , Análise de Variância , Desenho de Equipamento , Feminino , Humanos , Masculino , Psicometria , Psicofísica , Reprodutibilidade dos Testes , Estresse Mecânico , Resultado do Tratamento , Interface Usuário-Computador , Adulto Jovem
13.
IEEE Trans Haptics ; 9(4): 586-597, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27244751

RESUMO

Three experiments were carried out to determine absolute and differential thresholds for vibrotactile forces and external influences in the frequency range of 5 to 1,000 Hz at the tip of the index finger. Differential thresholds were obtained for reference stimuli of 0.5, 0.25 N, and near the individual threshold. Frequency, temperature, age, fingertip size, and contact force were investigated as parameters in a full-factorial design. Experiments were conducted with at least 27 subjects and a 1up-2down staircase procedure with 3IFC paradigm. We find absolute thresholds ranging from 1.7 to 19 mN with the lowest threshold at 320 Hz. Weber fractions from 18 to 41 dB are found near the absolute threshold. For larger references, they range from 4.9 to 23 dB. ANOVA finds frequency as significant medium effect for both absolute and differential thresholds. Results imply impact of age on the absolute threshold, but no effect of motor skill, temperature, fingertip size, and contact force. Differential thresholds are affected by frequency only, which is attributed to saturation effects of the Pacinian channel. Fingertip size and motor skill are not able to explain effects on thresholds and the interpersonal variance. Results of this work are intended as requirement source for the design of task-specific haptic interfaces.


Assuntos
Dedos/fisiologia , Estimulação Física/métodos , Limiar Sensorial/fisiologia , Percepção do Tato/fisiologia , Adulto , Limiar Diferencial/fisiologia , Humanos , Vibração , Adulto Jovem
14.
IEEE Trans Haptics ; 9(3): 397-408, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27116752

RESUMO

In this paper, we develop possible realizations of pseudo-haptic feedback in teleoperation systems based on existing works for pseudo-haptic feedback in virtual reality and the intended applications. We derive four potential factors affecting the performance of haptic feedback (calculation operator, maximum displacement, offset force, and scaling factor), which are analyzed in three compliance identification experiments. First, we analyze the principle usability of pseudo-haptic feedback by comparing information transfer measures for teleoperation and direct interaction. Pseudo-haptic interaction yields well above-chance performance, while direct interaction performs almost perfectly. In order to optimize pseudo-haptic feedback, in the second study we perform a full-factorial experimental design with 36 subjects performing 6,480 trials with 36 different treatments. Information transfer ranges from 0.68 bit to 1.72 bit in a task with a theoretical maximum of 2.6 bit, with a predominant effect of the calculation operator and a minor effect of the maximum displacement. In a third study, short- and long-term learning effects are analyzed. Learning effects regarding the performance of pseudo-haptic feedback cannot be observed for single-day experiments. Tests over 10 days show a maximum increase in information transfer of 0.8 bit. The results show the feasibility of pseudo-haptic feedback for teleoperation and can be used as design basis for task-specific systems.


Assuntos
Retroalimentação , Telemedicina/instrumentação , Tato/fisiologia , Adulto , Simulação por Computador , Desenho de Equipamento/métodos , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Procedimentos Cirúrgicos Robóticos/métodos , Robótica/métodos , Telemedicina/métodos , Interface Usuário-Computador
15.
Anal Chem ; 84(7): 3063-6, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22372606

RESUMO

Distributed sensing of gas-phase chemicals is a promising application for mesoporous materials when combined with highly sensitive miniaturized gas sensors. We present a direct application of a mesoporous silica thin film on a highly sensitive miniaturized resonant chemical sensor with a mass sensitivity at the zeptogram scale for relative humidity and CO(2) detection. Using mesoporous silica thin-film, we report one of the lowest volume resolutions and a sensitive detection of 5.1 × 10(-4)% RH/Hz to water vapor in N(2), which is 70 times higher than a device with a nontemplated silica layer. In addition, a mesoporous thin-film that is functionalized with an amino-group is directly applied on the resonant sensor, which exhibits a volume sensitivity of 1.6 × 10(-4)%/Hz and a volume resolution of 1.82 × 10(-4)% to CO(2) in N(2).

16.
Anal Chem ; 83(24): 9314-20, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22124375

RESUMO

Distributed sensing of gas-phase chemicals using highly sensitive and inexpensive sensors is of great interest for many defense and consumer applications. In this paper we present ppb-level detection of dimethyl methylphosphonate (DMMP), a common simulant for sarin gas, with a ppt-level resolution using an improved capacitive micromachined ultrasonic transducer (CMUT) as a resonant chemical sensor. The improved CMUT operates at a higher resonant frequency of 47.7 MHz and offers an improved mass sensitivity of 48.8 zg/Hz/µm(2) by a factor of 2.7 compared to the previous CMUT sensors developed. A low-noise oscillator using the CMUT resonant sensor as the frequency-selective device was developed for real-time sensing, which exhibits an Allan deviation of 1.65 Hz (3σ) in the presence of a gas flow; this translates into a mass resolution of 80.5 zg/µm(2). The CMUT resonant sensor is functionalized with a 50-nm thick DKAP polymer developed at Sandia National Laboratory for dimethyl methylphosphonate (DMMP) detection. To demonstrate ppb-level detection of the improved chemical sensor system, the sensor performance was tested at a certified lab (MIT Lincoln Laboratory), which is equipped with an experimental chemical setup that reliably and accurately delivers a wide range of low concentrations down to 10 ppb. We report a high volume sensitivity of 34.5 ± 0.79 pptv/Hz to DMMP and a good selectivity of the polymer to DMMP with respect to dodecane and 1-octanol.

17.
J Microelectromech Syst ; 19(6): 1341-1351, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21170294

RESUMO

The packaging of a medical imaging or therapeutic ultrasound transducer should provide protective insulation while maintaining high performance. For a capacitive micromachined ultrasonic transducer (CMUT), an ideal encapsulation coating would therefore require a limited and predictable change on the static operation point and the dynamic performance, while insulating the high dc and dc actuation voltages from the environment. To fulfill these requirements, viscoelastic materials, such as polydimethylsiloxane (PDMS), were investigated for an encapsulation material. In addition, PDMS, with a glass-transition temperature below room temperature, provides a low Young's modulus that preserves the static behavior; at higher frequencies for ultrasonic operation, this material becomes stiffer and acoustically matches to water. In this paper, we demonstrate the modeling and implementation of the viscoelastic polymer as the encapsulation material. We introduce a finite element model (FEM) that addresses viscoelasticity. This enables us to correctly calculate both the static operation point and the dynamic behavior of the CMUT. CMUTs designed for medical imaging and therapeutic ultrasound were fabricated and encapsulated. Static and dynamic measurements were used to verify the FEM and show excellent agreement. This paper will help in the design process for optimizing the static and the dynamic behavior of viscoelastic-polymer-coated CMUTs.

18.
IEEE Trans Biomed Eng ; 57(1): 114-23, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19628448

RESUMO

Therapeutic ultrasound guided by MRI is a noninvasive treatment that potentially reduces mortality, lowers medical costs, and widens accessibility of treatments for patients. Recent developments in the design and fabrication of capacitive micromachined ultrasonic transducers (CMUTs) have made them competitive with piezoelectric transducers for use in therapeutic ultrasound applications. In this paper, we present the first designs and prototypes of an eight-element, concentric-ring, CMUT array to treat upper abdominal cancers. This array was simulated and designed to focus 30-50 mm into tissue, and ablate a 2- to 3-cm-diameter tumor within 1 h. Assuming a surface acoustic output pressure of 1 MPa peak-to-peak (8.5 W/cm (2)) at 2.5 MHz, we simulated an array that produced a focal intensity of 680 W/cm (2) when focusing to 35 mm. CMUT cells were then designed to meet these frequency and surface acoustic intensity specifications. These cell designs were fabricated as 2.5 mm x 2.5 mm test transducers and used to verify our models. The test transducers were shown to operate at 2.5 MHz with an output pressure of 1.4 MPa peak-to-peak (16.3 W/cm (2)). With this CMUT cell design, we fabricated a full eight-element array. Due to yield issues, we only developed electronics to focus the four center elements of the array. The beam profile of the measured array deviated from the simulated one because of the crosstalk effects; the beamwidth matched within 10% and sidelobes increased by two times, which caused the measured gain to be 16.6 compared to 27.4.


Assuntos
Microtecnologia/instrumentação , Terapia por Ultrassom/instrumentação , Ultrassonografia de Intervenção/instrumentação , Neoplasias Abdominais/diagnóstico por imagem , Simulação por Computador , Análise de Elementos Finitos , Imagem por Ressonância Magnética Intervencionista , Transdutores , Terapia por Ultrassom/métodos , Ultrassonografia de Intervenção/métodos
19.
Proc IEEE Ultrason Symp ; 2010: 547-550, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22685377

RESUMO

We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required - in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate.

20.
Proc IEEE Ultrason Symp ; 2010: 1234-1237, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21874100

RESUMO

The ability of ultrasound transducers to operate over a wide and varying pressure range is essential in applications such as ultrasonic flow metering (UFM) of flare gas. We propose a new operational mode for capacitive micromachined ultrasonic transducers (CMUTs), in which the plate is in permanent contact with the bottom of the cavity, even at zero DC bias and 1 atm pressure. Finite element analysis (FEA) software was used to investigate the performance of these CMUTs within the pressure range of 1 to 20 atm. First, we performed a static analysis to determine the plate deflection and, thus, the gap height. Further, from the static analysis, we obtained the static and free capacitances for calculating the coupling efficiency, and a modal analysis identified possible design geometries for frequencies lower than ~ 300 kHz. Our calculations show that conventionally operated CMUTs have huge changes in static operational point at different pressures, while our proposed mode exhibits an acceptable frequency range (73 - 340 kHz) over 1 - 20 atm pressure and an improved coupling efficiency at lower dc bias voltages. A donut shape partial electrode further allows us to tune the coupling efficiency, which translates into a better performance, especially at the higher pressure range. FEA shows that our proposed operation mode is a promising solution for flare gas metering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...