Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
J Magn Reson ; 362: 107690, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692250

RESUMO

This research report describes a novel surface dielectric resonator (SDR) with a flexible connector for in vivo electron paramagnetic resonance (EPR) spectroscopy. Contrary to the conventional cavity or surface loop-gap resonators, the newly developed SDR is constructed from a ceramic dielectric material, and it is tuned to operate at the L-band frequency band (1.15 GHz) in continuous-wave mode. The SDR is designed to be critically coupled and capable of working with both very lossy samples, such as biological tissues, and non-lossy materials. The SDR was characterized using electromagnetic field simulations, assessed for sensitivity with a B1 field-perturbation method, and validated with tissue phantoms using EPR measurements. The results showed remarkably higher sensitivity in lossy tissue phantoms than the previously reported multisegment surface-loop resonators. The new SDR can provide potential new insights for advancements in the application of in vivo EPR spectroscopy for biological measurements, including clinical oximetry.


Assuntos
Campos Eletromagnéticos , Desenho de Equipamento , Imagens de Fantasmas , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Reprodutibilidade dos Testes , Oximetria/instrumentação , Oximetria/métodos
2.
Free Radic Biol Med ; 218: 57-67, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574976

RESUMO

Understanding the tumor redox status is important for efficient cancer treatment. Here, we noninvasively detected changes in the redox environment of tumors before and after cancer treatment in the same individuals using a novel compact and portable electron paramagnetic resonance imaging (EPRI) device and compared the results with glycolytic information obtained through autoradiography using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). Human colon cancer HCT116 xenografts were used in the mice. We used 3-carbamoyl-PROXYL (3CP) as a paramagnetic and redox status probe for the EPRI of tumors. The first EPRI was followed by the intraperitoneal administration of buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, or X-ray irradiation of the tumor. A second EPRI was performed on the following day. Autoradiography was performed after the second EPRI. After imaging, the tumor sections were evaluated by histological analysis and the amount of reducing substances in the tumor was measured. BSO treatment and X-ray irradiation significantly decreased the rate of 3CP reduction in tumors. Redox maps of tumors obtained from EPRI can be compared with tissue sections of approximately the same cross section. BSO treatment reduced glutathione levels in tumors, whereas X-ray irradiation did not alter the levels of any of the reducing substances. Comparison of the redox map with the autoradiography of [18F]FDG revealed that regions with high reducing power in the tumor were active in glucose metabolism; however, this correlation disappeared after X-ray irradiation. These results suggest that the novel compact and portable EPRI device is suitable for multimodal imaging, which can be used to study tumor redox status and therapeutic efficacy in cancer, and for combined analysis with other imaging modalities.


Assuntos
Estudos de Viabilidade , Fluordesoxiglucose F18 , Glucose , Imagem Multimodal , Oxirredução , Animais , Humanos , Camundongos , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Imagem Multimodal/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Butionina Sulfoximina/farmacologia , Autorradiografia , Células HCT116 , Neoplasias do Colo/metabolismo , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Compostos Radiofarmacêuticos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Glutationa/metabolismo , Camundongos Nus
3.
Magn Reson Med ; 92(1): 430-439, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38411265

RESUMO

PURPOSE: Electron spin resonance (ESR) is used to measure oxygen partial pressure (pO2) in biological media with many clinical applications. Traditional clinical ESR involves large magnets that encompass the subject of measurement. However, certain applications might benefit from a scanner operating within local static magnetic fields. Our group recently developed such a compact scanner for transcutaneous (surface) pO2 measurements of skin tissue. Here we extend this capability to subsurface (subcutaneous) pO2 measurements and verify it using an artificial tissue emulating (ATE) phantom. METHODS: We introduce a new scanner, tailored for subcutaneous measurements up to 2 mm beneath the skin's surface. This scanner captures pulsed ESR signals from embedded approximate 1-mm oxygen-sensing solid paramagnetic implant, OxyChip. The scanner features a static magnetic field source, producing a uniform region outside its surface, and a compact microwave resonator, for exciting and receiving ESR signals. RESULTS: ESR readings derived from an OxyChip, positioned approximately 1.5 mm from the scanner's surface, embedded in ATE phantom, exhibited a linear relation of 1/T2 versus pO2 for pO2 levels at 0, 7.6, 30, and 160 mmHg, with relative reading accuracy of about 10%. CONCLUSION: The compact ESR scanner can report pO2 data in ATE phantom from an external position relative to the scanner. Implementing this scanner in preclinical and clinical applications for subcutaneous pO2 measurements is a feasible next phase for this development. This innovative design also has the potential to operate in conjunction with artificial skin graft for wound healing, combining therapeutic and pO2 diagnostic features.


Assuntos
Oximetria , Oxigênio , Imagens de Fantasmas , Espectroscopia de Ressonância de Spin Eletrônica , Oximetria/métodos , Humanos , Desenho de Equipamento , Pele/diagnóstico por imagem
5.
Cell Biochem Biophys ; 81(2): 205-229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36820994

RESUMO

Nordihydroguaiaretic acid (NDGA), a dicatechol and phytochemical polyphenolic antioxidant and an established inhibitor of human arachidonic acid (AA) 5-lipoxygenase (LOX) and 15-LOX, is widely used to ascertain the role of LOXs in vascular endothelial cell (EC) function. As the modulatory effect of NDGA on phospholipase D (PLD), an important lipid signaling enzyme in ECs, thus far has not been reported, here we have investigated the modulation of PLD activity and its regulation by NDGA in the bovine pulmonary artery ECs (BPAECs). NDGA induced the activation of PLD (phosphatidic acid formation) in cells in a dose- and time-dependent fashion that was significantly attenuated by iron chelator and antioxidants. NDGA induced the formation of reactive oxygen species (ROS) in cells in a dose- and time-dependent manner as evidenced from fluorescence microscopy and fluorimetry of ROS and electron paramagnetic resonance spectroscopy of oxygen radicals. Also, NDGA caused a dose-dependent loss of intracellular glutathione (GSH) in BPAECs. Protein tyrosine kinase (PTyK)-specific inhibitors significantly attenuated NDGA-induced PLD activation in BPAECs. NDGA also induced a dose- and time-dependent phosphorylation of tyrosine in proteins in cells. NDGA caused in situ translocation and relocalization of both PLD1 and PLD2 isoforms, in a time-dependent fashion. Cyclooxygenase (COX) inhibitors were ineffective in attenuating NDGA-induced PLD activation in BPAECs, thus ruling out the activation of COXs by NDGA. NDGA inhibited the AA-LOX activity and leukotriene C4 (LTC4) formation in cells. On the other hand, the 5-LOX-specific inhibitors, 5, 8, 11, 14-eicosatetraynoic acid and kaempferol, were ineffective in activating PLD in BPAECs. Antioxidants and PTyK-specific inhibitors effectively attenuated NDGA cytotoxicity in BPAECs. The PLD-specific inhibitor, 5-fluoro-2-indolyl deschlorohalopemide (FIPI), significantly attenuated and protected against the NDGA-induced PLD activation and cytotoxicity in BPAECs. For the first time, these results demonstrated that NDGA, the classic phytochemical polyphenolic antioxidant and LOX inhibitor, activated PLD causing cytotoxicity in ECs through upstream oxidant signaling and protein tyrosine phosphorylation.


Assuntos
Antioxidantes , Fosfolipase D , Animais , Bovinos , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fosforilação , Masoprocol/farmacologia , Masoprocol/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxidantes , Células Endoteliais/metabolismo , Fosfolipase D/metabolismo , Fosfolipase D/farmacologia , Inibidores Enzimáticos/metabolismo , Pulmão/metabolismo , Tirosina/farmacologia , Tirosina/metabolismo
7.
Magn Reson Med ; 87(3): 1621-1637, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719047

RESUMO

PURPOSE: Electron paramagnetic resonance oximetry using the OxyChip as an implantable oxygen sensor can directly and repeatedly measure tissue oxygen levels. A phase I, first-in-human clinical study has established the safety and feasibility of using OxyChip for reliable and repeated measurements of oxygen levels in a variety of tumors and treatment regimens. A limitation in these studies is the inability to easily locate and identify the implanted probes in the tissue, particularly in the long term, thus limiting spatial/anatomical registration of the implant for proper interpretation of the oxygen data. In this study, we have developed and evaluated an enhanced oxygen-sensing probe embedded with gold nanoparticles (GNP), called the OxyChip-GNP, to enable visualization of the sensor using routine clinical imaging modalities. METHODS: In vitro characterization, imaging, and histopathology studies were carried out using tissue phantoms, excised tissues, and in vivo animal models (mice and rats). RESULTS: The results demonstrated a substantial enhancement of ultrasound and CT contrast using the OxyChip-GNP without compromising its electron paramagnetic resonance and oxygen-sensing properties or biocompatibility. CONCLUSIONS: The OxyChips embedded with gold nanoparticles (OxyChip-GNP) can be readily identified in soft tissues using standard clinical imaging modalities such as CT, cone beam-CT, or ultrasound imaging while maintaining its capability to make repeated in vivo measurements of tissue oxygen levels over the long term. This unique capability of the OxyChip-GNP facilitates precisely localized in vivo oxygen measurements in the clinical setting.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Camundongos , Oximetria , Oxigênio , Ratos
8.
Gynecol Oncol ; 164(1): 136-145, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34756749

RESUMO

INTRODUCTION: TMEM205 is a novel transmembrane protein associated with platinum resistance (PR) in epithelial ovarian carcinoma (OC), however, the specific mechanisms associated with this resistance remain to be elucidated. METHODS: TMEM205 expression was evaluated in platinum-sensitive (PS) versus platinum resistant (PR) ovarian cancer cell lines and patient serum/tissues. Exosomal efflux of platinum was evaluated with inductively coupled plasma mass spectrometry (ICP-MS) after pre-treatment with small molecule inhibitors (L-2663/L-2797) of TMEM205 prior to treatment with platinum. Cytotoxicity of combination treatment was confirmed in vitro and in an in vivo model. RESULTS: TMEM205 expression was 10-20 fold higher in PR compared to PS ovarian cancer cell lines, serum samples, and tissues. Co-localization with CD1B was confirmed by in-situ proximity ligation assay suggesting that TMEM205 may mediate PR via the exosomal pathway. Exosomal secretion was significantly increased 5-10 fold in PR cell lines after treatment with carboplatin compared to PS cell lines. Pre-treatment with L-2663 prior to carboplatin resulted in significantly increased intracellular concentration of fluorescently-labeled cisplatin and decreased exosomal efflux of platinum. Decreased cell survival and tumor growth in vitro and in vivo was observed when PR cells were treated with a combination of L-2663 with carboplatin compared to carboplatin alone. CONCLUSION: TMEM205 appears to be involved in the development of PR in ovarian cancer through the exosomal efflux of platinum agents. This study provides pre-clinical evidence that TMEM205 could serve as a possible biomarker for PR as well as a therapeutic target in combination with platinum agents.


Assuntos
Antineoplásicos , Carboplatina , Proteínas de Membrana , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo
9.
Appl Magn Reson ; 52(10): 1321-1342, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34744319

RESUMO

OBJECTIVES: (1) Summarize revisions made to the implantable resonator (IR) design and results of testing to characterize biocompatibility;(2) Demonstrate safety of implantation and feasibility of deep tissue oxygenation measurement using electron paramagnetic resonance (EPR) oximetry. STUDY DESIGN: In vitro testing of the revised IR and in vivo implantation in rabbit brain and leg tissues. METHODS: Revised IRs were fabricated with 1-4 OxyChips with a thin wire encapsulated with two biocompatible coatings. Biocompatibility and chemical characterization tests were performed. Rabbits were implanted with either an IR with 2 oxygen sensors or a biocompatible-control sample in both the brain and hind leg. The rabbits were implanted with IRs using a catheter-based, minimally invasive surgical procedure. EPR oximetry was performed for rabbits with IRs. Cohorts of rabbits were euthanized and tissues were obtained at 1 week, 3 months, and 9 months after implantation and examined for tissue reaction. RESULTS: Biocompatibility and toxicity testing of the revised IRs demonstrated no abnormal reactions. EPR oximetry from brain and leg tissues were successfully executed. Blood work and histopathological evaluations showed no significant difference between the IR and control groups. CONCLUSIONS: IRs were functional for up to 9 months after implantation and provided deep tissue oxygen measurements using EPR oximetry. Tissues surrounding the IRs showed no more tissue reaction than tissues surrounding the control samples. This pre-clinical study demonstrates that the IRs can be safely implanted in brain and leg tissues and that repeated, non-invasive, deep-tissue oxygen measurements can be obtained using in vivo EPR oximetry.

10.
Front Oncol ; 11: 743256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660306

RESUMO

OBJECTIVE: The overall objective of this clinical study was to validate an implantable oxygen sensor, called the 'OxyChip', as a clinically feasible technology that would allow individualized tumor-oxygen assessments in cancer patients prior to and during hypoxia-modification interventions such as hyperoxygen breathing. METHODS: Patients with any solid tumor at ≤3-cm depth from the skin-surface scheduled to undergo surgical resection (with or without neoadjuvant therapy) were considered eligible for the study. The OxyChip was implanted in the tumor and subsequently removed during standard-of-care surgery. Partial pressure of oxygen (pO2) at the implant location was assessed using electron paramagnetic resonance (EPR) oximetry. RESULTS: Twenty-three cancer patients underwent OxyChip implantation in their tumors. Six patients received neoadjuvant therapy while the OxyChip was implanted. Median implant duration was 30 days (range 4-128 days). Forty-five successful oxygen measurements were made in 15 patients. Baseline pO2 values were variable with overall median 15.7 mmHg (range 0.6-73.1 mmHg); 33% of the values were below 10 mmHg. After hyperoxygenation, the overall median pO2 was 31.8 mmHg (range 1.5-144.6 mmHg). In 83% of the measurements, there was a statistically significant (p ≤ 0.05) response to hyperoxygenation. CONCLUSIONS: Measurement of baseline pO2 and response to hyperoxygenation using EPR oximetry with the OxyChip is clinically feasible in a variety of tumor types. Tumor oxygen at baseline differed significantly among patients. Although most tumors responded to a hyperoxygenation intervention, some were non-responders. These data demonstrated the need for individualized assessment of tumor oxygenation in the context of planned hyperoxygenation interventions to optimize clinical outcomes.

11.
Cell Biochem Biophys ; 79(3): 593-607, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34133009

RESUMO

Pulmonary hypertension (PH) is a condition when the pressure in the lung blood vessels is elevated. This leads to increase in thickness of the blood vessels and increases the workload of the heart and lungs. The incidence and prevalence of PH has been on the increase in the last decade. It is estimated that PH affects about 1% of the global population and about 10% of individuals >65 years of age. Of the various types, Group 2 PH is the most common type seen in the elderly population. Fixed PH or PH refractive to therapies is considered a contraindication for heart transplantation; the 30-day mortality in heart transplant recipients is significantly increased in the subset of this population. In general, the pathobiology of PH involves multiple factors including hypoxia, oxidative stress, growth factor receptors, vascular stress, etc. Hence, it is challenging and important to identify specific mechanisms, diagnosis and develop effective therapeutic strategies. The focus of this manuscript is to review some of the important pathobiological processes and mechanisms in the development of PH. Results from our previously reported studies, including targeted treatments along with some new data on PH secondary to left-heart failure, are presented.


Assuntos
Piperidonas
12.
J Magn Reson ; 328: 106992, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965648

RESUMO

Electron paramagnetic resonance (EPR) oximetry, using oxygen-sensing implant such as OxyChip, is capable of measuring oxygen concentration in vivo - a critical tissue information required for successful medical treatment such as cancer, wound healing and diabetes. Typically, EPR oximetry produces one value of the oxygen concentration, expressed as pO2 at the site of implant. However, it is well recognized that in vivo one deals with a distribution of oxygen concentration and therefore reporting just one number is not representative_a long-standing critique of EPR oximetry. Indeed, when it comes to the assessment of radiation efficacy one should be guided not by the mean or median but the proportion of oxygenated cancer cells which can be estimated only when the whole oxygen distribution in the tumor is known. Although there is a handful of papers attempting estimation of the oxygen distribution they suffer from the problem of negative frequencies and no theoretical justification and no biomedical interpretation. The goal of this work is to suggest a novel method using the empirical Bayesian approach realized via nonlinear mixed modeling with a priori distribution of oxygen following a two-parameter lognormal distribution with parameters estimated from the multi-implant single component EPR scan. Unlike previous work, the result of our estimation is the distribution with positive values for the frequency and the associated pO2 value. Our algorithm based on nonlinear regression is illustrated with EPR measurements on OxyChips equilibrated with gas mixtures containing four values of pO2 and computation of the proportion of volume with pO2 greater than any given threshold. This approach may become crucial for application of the EPR oximetry in clinical setting when the sucsess of the treatment depends of the proportion of tissue oxygenated.


Assuntos
Neoplasias , Oximetria , Teorema de Bayes , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Neoplasias/diagnóstico por imagem , Oxigênio
13.
Adv Exp Med Biol ; 1269: 259-263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33966227

RESUMO

Electron paramagnetic resonance (EPR) oximetry based on lithium naphthalocyanine paramagnetic crystals as oxygen sensors enables direct measurement of the partial pressure of oxygen (pO2) in tissues. The method uses topical or implantable forms of these oxygen-sensing crystals embedded in a biocompatible siloxane elastomer. This article presents a summary of these sensors for EPR oximetry and their applicability for tissue oxygen measurement in the clinic.


Assuntos
Oximetria , Oxigênio , Espectroscopia de Ressonância de Spin Eletrônica , Pressão Parcial , Próteses e Implantes
14.
J Radiat Res ; 62(4): 564-573, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33912932

RESUMO

A post-exposure cohort study in Hiroshima and Nagasaki reported that low-dose exposure to radiation heightened the risk of cardiovascular diseases (CVD), such as stroke and myocardial infarction, by 14-18% per Gy. Moreover, the risk of atherosclerosis in the coronary arteries reportedly increases with radiation therapy of the chest, including breast and lung cancer treatment. Cellular senescence of vascular endothelial cells (ECs) is believed to play an important role in radiation-induced CVDs. The molecular mechanism of age-related cellular senescence is believed to involve genomic instability and DNA damage response (DDR); the chronic inflammation associated with senescence causes cardiovascular damage. Therefore, vascular endothelial cell senescence is believed to induce the pathogenesis of CVDs after radiation exposure. The findings of several prior studies have revealed that ionizing radiation (IR) induces cellular senescence as well as cell death in ECs. We have previously reported that DDR activates endothelial nitric oxide (NO) synthase, and NO production promotes endothelial senescence. Endothelial NO synthase (eNOS) is a major isoform expressed in ECs that maintains cardiovascular homeostasis. Therefore, radiation-induced NO production, a component of the DDR in ECs, may be involved in CVDs after radiation exposure. In this article, we describe the pathology of radiation-induced CVD and the unique radio-response to radiation exposure in ECs.


Assuntos
Envelhecimento/patologia , Doenças Cardiovasculares/etiologia , Dano ao DNA , Endotélio Vascular/patologia , Lesões por Radiação/complicações , Animais , Humanos , Óxido Nítrico/biossíntese , Estresse Oxidativo
15.
Sci Rep ; 11(1): 4422, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627688

RESUMO

During a first-in-humans clinical trial investigating electron paramagnetic resonance tumor oximetry, a patient injected with the particulate oxygen sensor Printex ink was found to have unexpected fluorodeoxyglucose (FDG) uptake in a dermal nodule via positron emission tomography (PET). This nodule co-localized with the Printex ink injection; biopsy of the area, due to concern for malignancy, revealed findings consistent with ink and an associated inflammatory reaction. Investigations were subsequently performed to assess the impact of oxygen sensors on FDG-PET/CT imaging. A retrospective analysis of three clinical tumor oximetry trials involving two oxygen sensors (charcoal particulates and LiNc-BuO microcrystals) in 22 patients was performed to evaluate FDG imaging characteristics. The impact of clinically used oxygen sensors (carbon black, charcoal particulates, LiNc-BuO microcrystals) on FDG-PET/CT imaging after implantation in rat muscle (n = 12) was investigated. The retrospective review revealed no other patients with FDG avidity associated with particulate sensors. The preclinical investigation found no injected oxygen sensor whose mean standard uptake values differed significantly from sham injections. The risk of a false-positive FDG-PET/CT scan due to oxygen sensors appears low. However, in the right clinical context the potential exists that an associated inflammatory reaction may confound interpretation.

16.
Magn Reson Med ; 85(5): 2915-2925, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33210362

RESUMO

PURPOSE: Skin oxygen level is of significance for the diagnosis and treatment of many clinical problems, such as chronic wounds and diabetic foot ulcers. Furthermore, skin oxygen levels can be correlated to arterial oxygen partial pressure, thereby revealing potentially dangerous conditions such as hyperoxia (too much oxygen), which may occur in ventilated neonates. Traditionally, skin oxygen levels are measured using electrochemical methods and, more recently, also by fluorescence lifetime techniques. These approaches suffer from several drawbacks, rendering them suboptimal. The purpose of this work is to develop an electron spin resonance (ESR) -based method for monitoring oxygen partial pressure (pO2 ) in skin tissue. METHODS: A compact sensor for pulsed ESR is designed and constructed. Our ESR-based method makes use of a unique exogenous paramagnetic spin probe that is placed on the skin in a special partially sealed sticker, and subsequently measuring its signal with the compact pulsed ESR sensor that includes a miniature magnet and a small S-band (~2.3 GHz) microwave resonator. The inverse of the spin-spin relaxation time (1/T2 ) measured by ESR is shown to be linearly correlated with pO2 levels. RESULTS: The sensor and its matching sticker were tested both in vitro and in vivo (with human subjects). Measured skin pO2 levels reached equilibrium after ~2-3 h and were found to be comparable to those measured by continuous-wave (CW) ESR using a large electromagnet. CONCLUSIONS: A compact pulsed ESR sensor with a matching paramagnetic sticker can be used for pO2 monitoring of the skin tissue, similar to large bulky CW ESR systems.


Assuntos
Hiperóxia , Oximetria , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Recém-Nascido , Imãs , Oxigênio
18.
Front Oncol ; 10: 572060, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194670

RESUMO

Introduction: Tumor hypoxia confers both a poor prognosis and increased resistance to oncologic therapies, and therefore, hypoxia modification with reliable oxygen profiling during anticancer treatment is desirable. The OxyChip is an implantable oxygen sensor that can detect tumor oxygen levels using electron paramagnetic resonance (EPR) oximetry. We report initial safety and feasibility outcomes after OxyChip implantation in a first-in-humans clinical trial (NCT02706197, www.clinicaltrials.gov). Materials and Methods: Twenty-four patients were enrolled. Eligible patients had a tumor ≤ 3 cm from the skin surface with planned surgical resection as part of standard-of-care therapy. Most patients had a squamous cell carcinoma of the skin (33%) or a breast malignancy (33%). After an initial cohort of six patients who received surgery alone, eligibility was expanded to patients receiving either chemotherapy or radiotherapy prior to surgical resection. The OxyChip was implanted into the tumor using an 18-G needle; a subset of patients had ultrasound-guided implantation. Electron paramagnetic resonance oximetry was carried out using a custom-built clinical EPR scanner. Patients were evaluated for associated toxicity using the Common Terminology Criteria for Adverse Events (CTCAE); evaluations started immediately after OxyChip placement, occurred during every EPR oximetry measurement, and continued periodically after removal. The OxyChip was removed during standard-of-care surgery, and pathologic analysis of the tissue surrounding the OxyChip was performed. Results: Eighteen patients received surgery alone, while five underwent chemotherapy and one underwent radiotherapy prior to surgery. No unanticipated serious adverse device events occurred. The maximum severity of any adverse event as graded by the CTCAE was 1 (least severe), and all were related to events typically associated with implantation. After surgical resection, 45% of the patients had no histopathologic findings specifically associated with the OxyChip. All tissue pathology was "anticipated" excepting a patient with greater than expected inflammatory findings, which was assessed to be related to the tumor as opposed to the OxyChip. Conclusion: This report of the first-in-humans trial of OxyChip implantation and EPR oximetry demonstrated no significant clinical pathology or unanticipated serious adverse device events. Use of the OxyChip in the clinic was thus safe and feasible.

19.
Cell Biochem Biophys ; 78(2): 191-202, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32449075

RESUMO

Pancreatic adenocarcinoma is an aggressive cancer with poor clinical prognosis and limited therapeutic options. There is a significant lack of effective, safe, and targeted therapies for successful treatment of pancreatic cancer. In this report, we describe the anticancer efficacy of two novel compounds, N-methylpiperazinyl diarylidenylpiperidone (L-2663) and its pro-nitroxide conjugate (HO-4589) evaluated on human pancreatic adenocarcinoma (AsPC-1) cell line and xenograft tumor in mice. Using flow cytometry, we determined the effect of the L-2663 and HO-4589 drugs in inducing mitochondrial toxicity, triggering cell-cycle arrest, and apoptosis. EPR spectroscopy was used to quantify cellular uptake, metabolic conversion and stability of HO-4589 in cells and in vivo monitoring of tumor oxygenation as a function of growth. The results established different antiproliferative efficacy of the L-2663 and HO-4589 compounds, with a targeted action on cancer cells while being less toxic to noncancerous cells. The study may have important implications in the future designs of safe and effective chemotherapeutic agents for the treatment of pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Piperazinas/farmacologia , Piperidonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Divisão Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Espectroscopia de Ressonância de Spin Eletrônica , Fase G2 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Oximetria , Espécies Reativas de Oxigênio/metabolismo
20.
Biomed Microdevices ; 22(1): 3, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31797058

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy using oxygen-sensing implants can provide reliable and repeated measurements of the partial pressure of oxygen (pO2) over a period of months or longer; however, it does not provide accurate information about the distribution of tissue oxygenation. While EPR imaging has the capability to provide spatially resolved oxygen data, it is time-consuming and not optimized for discrete number of implants. Previous reports suggest multi-site algorithms, which would require either the implants to be aligned in a certain way so as to deconvolve them using a linear magnetic field gradient or sparse imaging of the implants from a small number of 3D projections. In this paper, we present a simpler and much faster method to estimate the pO2 histogram from a composite, single-scan EPR spectrum measured without applying field gradients to separate the EPR signals from multiple randomly placed oxygen-sensing implants. The method is optimized for a discrete number of implants, validated using simulations, experimental phantoms and in animal models. The results established the composite spectral fitting algorithm as a reliable and robust tool for multi-site oximetry.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oxigênio/metabolismo , Pressão , Próteses e Implantes , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...