Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(31): 12962-12972, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39026489

RESUMO

Four novel Co(II) coordination compounds 1-4 of the general formula [Co(Ln)2][Co(NCY)4]·mCH3CN (where Ln are tridentate ligands L1 = 2,6-bis(1-hexyl-1H-benzimidazol-2-yl)pyridine for 1 and 2; L2 = 2,6-bis(1-octyl-1H-benzimidazol-2-yl)pyridine for 3; L3 = 2,6-bis(1-dodecyl-1H-benzimidazol-2-yl)pyridine for 4, Y = O for 1, 3, and 4 and Y = S for 2; m = 0 for 1 and 3, m = 0.5 for 2 and m = 2 for 4) were prepared and characterised. The molecular structures of all four compounds consist of the hexacoordinate complex cation [Co(Ln)2]2+ and tetracoordinate complex anion [Co(NCY)4]2-, with distorted octahedral and tetrahedral symmetry of coordination polyhedra, respectively. The electronic structures of all compounds feature an orbitally non-degenerate ground state well-separated from the lowest excited state, which allows the analysis of the magnetic anisotropy by the spin Hamiltonian model. ZFS parameters, derived from both CASSCF-NEVPT2 calculations and magnetic data analysis, indicate that tetrahedral anions [Co(NCY)4]2- exhibit small axial parameters |D| spanning the range of 2.2 to 7.7 cm-1, while octahedral cations [Co(Ln)2]2+ display significantly larger |D| parameters in the range of 37 to 95 cm-1. For 1-3, the Fourier-transform infrared magnetic spectroscopy (FIRMS) revealed a reasonable transmission with a magnetic absorption around the expected value for the ZFS accompanied by features allowing to identify phonon frequencies and simulate spin-phonon couplings. Dynamic magnetic investigations unveiled the field-induced slow relaxation of magnetisation, with maximal relaxation times (τ) of 92(2) µs for 2 at 2 K and BDC = 0.3 T. The temperature evolution of τ was analysed using a combination of Orbach, direct and Raman relaxations (Ueff = 8(1) K (5.6 cm-1)) or Orbach, direct and spin-phonon induced relaxations (Ueff = 10.3(9) K (7.2 cm-1)). The rest of the complexes, namely 1, 3, and 4 show field-induced slow relaxation of magnetisation with τ smaller than 16 µs.

2.
Dalton Trans ; 53(26): 10851-10865, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38826041

RESUMO

Spin-state switching in iron(II) complexes composed of ligands featuring moderate ligand-field strength-for example, 2,6-bi(1H-pyrazol-1-yl)pyridine (BPP)-is dependent on many factors. Herein, we show that spin-state switching in isomeric iron(II) complexes composed of BPP-based ligands-ethyl 2,6-bis(1H-pyrazol-1-yl)isonicotinate (BPP-COOEt, L1) and (2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)methylacetate (BPP-CH2OCOMe, L2)-is dependent on the nature of the substituent at the BPP skeleton. Bi-stable spin-state switching-with a thermal hysteresis width (ΔT1/2) of 44 K and switching temperature (T1/2) = 298 K in the first cycle-is observed for complex 1·CH3CN composed of L1 and BF4- counter anions. Conversely, the solvent-free isomeric counterpart of 1·CH3CN-complex 2a, composed of L2 and BF4- counter anions-was trapped in the high-spin (HS) state. For one of the polymorphs of complex 2b·CH3CN-2b·CH3CN-Y, Y denotes yellow colour of the crystals-composed of L2 and ClO4- counter anions, a gradual and non-hysteretic SCO is observed with T1/2 = 234 K. Complexes 1·CH3CN and 2b·CH3CN-Y also underwent light-induced spin-state switching at 5 K due to the light-induced excited spin-state trapping (LIESST) effect. Structures of the low-spin (LS) and HS forms of complex 1·CH3CN revealed that spin-state switching goes hand-in-hand with pronounced distortion of the trans-N{pyridyl}-Fe-N{pyridyl} angle (ϕ), whereas such distortion is not observed for 2b·CH3CN-Y. This observation points that distortion is one of the factors making the spin-state switching of 1·CH3CN hysteretic in the solid state. The observation of bi-stable spin-state switching with T1/2 centred at room temperature for 1·CH3CN indicates that technologically relevant spin-state switching profiles based on mononuclear iron(II) complexes can be obtained.

3.
Chemphyschem ; : e202400280, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887965

RESUMO

Coordination complexes of rare-earth ions (REI) show optical transitions with narrow linewidths enabling the creation of coherent light-matter interfaces for quantum information processing (QIP) applications. Among the REI-based complexes, Eu(III) complexes showing the 5D0→7F0 transition are of interest for QIP applications due to the narrow linewidths associated with the transition. Herein, we report on the synthesis, structure, and optical properties of a novel Eu(III) complex and its Gd(III) analogue composed of 2,9-bis(pyrazol-1-yl)-1,10-phenanthroline (dpphen) and three nitrate (NO3) ligands. The Eu(III) complex-[Eu(dpphen)(NO3)3]-showed sensitized metal-centred emission (5D0→7FJ; J=0,1,2,3, 4, 5, or 6) in the visible region, upon irradiation of the ligand-centred band at 369 nm, with the 5D0→7F0 transition centred at 580.9 nm. Spectral hole-burning (SHB) studies of the complex with stoichiometric Eu(III) concentration revealed a narrow homogeneous linewidth (Γh) of 1.55 MHz corresponding to a 0.205 µs long optical coherence lifetime (T2opt). Remarkably, long nuclear spin lifetimes (T1spin) of up to 41 s have been observed for the complex. The narrow optical linewidths and long T1spin lifetimes obtained for the Eu(III) complex showcase the utility of Eu(III) complexes as tuneable, following molecular engineering principles, coherent light-matter interfaces for QIP applications.

4.
Chem Asian J ; 19(17): e202400574, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38870468

RESUMO

A new Co(II) complex, [Co(NCS)2(L)2] (1) has been synthesized based on levamisole (L) as a new ligand. Single-crystal X-ray diffraction analyses confirm that the Co(II) ion is having a distorted tetrahedral coordination geometry in the complex. Notably strong intramolecular S⋅⋅⋅S and S⋅⋅⋅N interactions has been confirmed by employing Quantum Theory of Atoms in Molecules (QTAIM). These intramolecular interactions occur among the sulfur and nitrogen atoms of the levamisole ligands and also the nitrogen atoms of the thiocyanate. Direct current (dc) magnetic analyses reveal presence of zero field splitting (ZFS) and large magnetic anisotropy on Co(II). Detailed ab initio ligand field theory calculations quantitatively predicted the magnitude of ZFS. Prominent field-induced single-ion magnet (SIM) behavior was observed for 1 from dynamic magnetization measurements. Slow magnetic relaxation follows an Orbach mechanism with the effective energy barrier Ueff=29.6 (7) K and relaxation time τo=1.4 (4)×10-9 s.

5.
Dalton Trans ; 53(23): 10019, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38812409

RESUMO

Correction for 'Computational demonstration of isomer- and spin-state-dependent charge transport in molecular junctions composed of charge-neutral iron(II) spin-crossover complexes' by Nicolás Montenegro-Pohlhammer, et al., Dalton Trans., 2023, 52, 1229-1240, https://doi.org/10.1039/D2DT02598A.

6.
Angew Chem Int Ed Engl ; 63(17): e202401372, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38390783

RESUMO

Herein, we present the first report on the synthesis of rare-earth complexes featuring a 9,10-diborataanthracene ligand. This 14-π-electron ligand is highly reductive and was previously used in small-molecule activation. Salt elimination reactions between dipotassium 9,10-diethyl-9,10-diborataanthracene [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] (CotTIPS=1,4-(iPr3Si)2C8H6) in a 1 : 1 ratio yielded heteroleptic sandwich complexes [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Y, Dy, Er). These compounds form Lewis-base-free one-dimensional coordination polymers when crystallised from toluene. In contrast, reaction of [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] in a 1 : 2 ratio led to the formation of heteroleptic triple-decker complexes [(η8-CotTIPS)LnIII(µ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Y, Dy, Er). Notably, these are not only the first lanthanide triple-decker compounds featuring a six-membered ring as a deck but also the first trivalent lanthanide triple-decker featuring a heterocycle in the coordination sphere. Magnetic investigations reveal that [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Dy, Er) and [(η8-CotTIPS)ErIII(µ-η6:η6-DEDBA)ErIII(η8-CotTIPS)] exhibit Single-Molecule Magnet (SMM) behaviour. In the case of [(η8-CotTIPS)LnIII(µ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Dy, Er), the introduction of a second near lanthanide ion results in strong antiferromagnetic interactions, allowing the enhancement of the magnetic characteristic of the system, compared to the quasi isolated counterpart. This research renews the overlooked coordination chemistry of the DBA ligand and expands it to encompass rare-earth elements.

7.
Inorg Chem ; 62(37): 15148-15156, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37655998

RESUMO

Single-molecule magnets are molecular complexes proposed to be useful for information storage and quantum information processing applications. In the quest for multilevel systems that can act as Qudits, two dysprosium-based isotopologues were synthesized and characterized. The isotopologues are [164Dy2(tmhd)6(tape)] (1(I=0)) and [163Dy2(tmhd)6(tape)] (2(I=5/2)), where tmhd = 2,2,6,6-tetramethylheptandionate and tape = 1,6,7,12-tetraazaperylene. Both complexes showed slow relaxation at a zero applied magnetic field with dominant Orbach and Raman relaxation mechanisms. µSQUID studies at milli-Kelvin temperatures reveal quasi-single ion loops, in contrast with the expected S-shape (near zero field) butterfly loops, characteristic of antiferromagnetically coupled dimeric complexes. Through analysis of the low-temperature data, we find that the interaction operating between Dy(III) is small, leading to a small exchange biasing from the zero-field transition. The resulting indirectly coupled nuclear states are degenerate or possess a small energy difference between them. We, therefore, conclude that for the creation of Qudits with enlarged Hilbert spaces, shorter Dy(III)···Dy(III) distances are deemed essential.

8.
Dalton Trans ; 52(5): 1229-1240, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36606462

RESUMO

Chemistry offers a multitude of opportunities towards harnessing functional molecular materials with application propensity. One emerging area of interest is molecular spintronics, in which charge and spin degrees of freedom have been used to achieve power-efficient device architectures. Herein, we show that, with the aid of state-of-the-art quantum chemical calculations on designer molecular junctions, the conductance and spin filtering capabilities are molecular structure-dependent. As inferred from the calculations, structural control over the transport can be achieved by changing the position of the thiomethyl (SMe) anchoring groups for Au(111) electrodes in a set of isomeric 2,2'-bipyridine-based metal coordinating ligand entities L1 and L2. The computational studies on heteroleptic iron(II) coordination complexes (1 and 2) composed of L1 and L2 reveal that switching the spin-state of the iron(II) centers, from the low-spin (LS) to high-spin (HS) state, by means of an external electric field stimulus, could, in theory, be performed. Such switching, known as spin-crossover (SCO), renders charge transport through single-molecule junctions of 1 and 2 spin-state-dependent, and the HS junctions are more conductive than the LS junctions for both complexes. Additionally, the LS and HS junctions based on complex 1 are more conductive than those featuring complex 2. Moreover, it is predicted that the spin filtering efficiency (SFE) of the HS junctions strongly depends on the bridging complex geometry, with 1 showing a voltage-dependent SFE, whereas 2 exhibits an SFE of practically 100% over all the studied voltage range. To be pragmatic towards applications, the ligands L1 and L2 and complex 1 have been successfully synthesized, and the spin-state switching propensity of 1 in the bulk state has been elucidated. The results shown in this study might lead to the synthesis and characterization of isomeric SCO complexes with tuneable spin-state switching and charge transport properties.

9.
Angew Chem Int Ed Engl ; 62(18): e202218107, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36651327

RESUMO

Solvation of [(CNT)Ln(η8 -COT)] (Ln=La, Ce, Nd, Tb, Er; CNT=cyclononatetraenyl, i.e., C9 H9 - ; COT=cyclooctatetraendiid, i.e., C8 H8 2- ) complexes with tetrahydrofuran (THF) gives rise to neutral [(η4 -CNT)Ln(thf)2 (η8 -COT)] (Ln=La, Ce) and ionic [Ln(thf)x (η8 -COT)][CNT] (x=4 (Ce, Nd, Tb), 3 (Er)) species in a solid-to-solid transformation. Due to the severe distortion of the ligand sphere upon solvation, these species act as switchable luminophores and single-molecule magnets. The desolvation of the coordinated solvents can be triggered by applying a dynamic vacuum, as well as a temperature gradient stimulus. Raman spectroscopic investigations revealed fast and fully reversible solvation and desolvation processes. Moreover, we also show that a Nd:YAG laser can induce the necessary temperature gradient for a self-sufficient switching process of the Ce(III) analogue in a spatially resolved manner.

10.
ACS Omega ; 7(16): 13654-13666, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559184

RESUMO

Spin-crossover (SCO) active iron(II) complexes are an integral class of switchable and bistable molecular materials. Spin-state switching properties of the SCO complexes have been studied in the bulk and single-molecule levels to progress toward fabricating molecule-based switching and memory elements. Supramolecular SCO complexes featuring anchoring groups for metallic electrodes, for example, gold (Au), are ideal candidates to study spin-state switching at the single-molecule level. In this study, we report on the spin-state switching characteristics of supramolecular iron(II) complexes 1 and 2 composed of functional 4-([2,2'-bithiophen]-5-ylethynyl)-2,6-di(1H-pyrazol-1-yl)pyridine (L1) and 4-(2-(5-(5-hexylthiophen-2-yl)thiophen-2-yl)ethynyl)-2,6-di(1H-pyrazol-1-yl)pyridine (L2) ligands, respectively. Density functional theory (DFT) studies revealed stretching-induced spin-state switching in a molecular junction composed of complex 1, taken as a representative example, and gold electrodes. Single-molecule conductance traces revealed the unfavorable orientation of the complexes in the junctions to demonstrate the spin-state dependence of the conductance.

11.
Nature ; 603(7900): 241-246, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264757

RESUMO

Rare-earth ions (REIs) are promising solid-state systems for building light-matter interfaces at the quantum level1,2. This relies on their potential to show narrow optical and spin homogeneous linewidths, or, equivalently, long-lived quantum states. This enables the use of REIs for photonic quantum technologies such as memories for light, optical-microwave transduction and computing3-5. However, so far, few crystalline materials have shown an environment quiet enough to fully exploit REI properties. This hinders further progress, in particular towards REI-containing integrated nanophotonics devices6,7. Molecular systems can provide such capability but generally lack spin states. If, however, molecular systems do have spin states, they show broad optical lines that severely limit optical-to-spin coherent interfacing8-10. Here we report on europium molecular crystals that exhibit linewidths in the tens of kilohertz range, orders of magnitude narrower than those of other molecular systems. We harness this property to demonstrate efficient optical spin initialization, coherent storage of light using an atomic frequency comb, and optical control of ion-ion interactions towards implementation of quantum gates. These results illustrate the utility of rare-earth molecular crystals as a new platform for photonic quantum technologies that combines highly coherent emitters with the unmatched versatility in composition, structure and integration capability of molecular materials.

12.
Chemistry ; 28(6): e202103853, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34939670

RESUMO

Bistable spin-crossover (SCO) complexes that undergo abrupt and hysteretic (ΔT1/2 ) spin-state switching are desirable for molecule-based switching and memory applications. In this study, we report on structural facets governing hysteretic SCO in a set of iron(II)-2,6-bis(1H-pyrazol-1-yl)pyridine) (bpp) complexes - [Fe(bpp-COOEt)2 ](X)2 ⋅CH3 NO2 (X=ClO4 , 1; X=BF4 , 2). Stable spin-state switching - T1/2 =288 K; ΔT1/2 =62 K - is observed for 1, whereas 2 undergoes above-room-temperature lattice-solvent content-dependent SCO - T1/2 =331 K; ΔT1/2 =43 K. Variable-temperature single-crystal X-ray diffraction studies of the complexes revealed pronounced molecular reorganizations - from the Jahn-Teller-distorted HS state to the less distorted LS state - and conformation switching of the ethyl group of the COOEt substituent upon SCO. Consequently, we propose that the large structural reorganizations rendered SCO hysteretic in 1 and 2. Such insights shedding light on the molecular origin of thermal hysteresis might enable the design of technologically relevant molecule-based switching and memory elements.

13.
Angew Chem Int Ed Engl ; 60(52): 26932-26938, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34555241

RESUMO

Tailored nano-spaces can control enantioselective adsorption and molecular motion. We report on the spontaneous assembly of a dynamic system-a rigid kagome network with each pore occupied by a guest molecule-employing solely 2,6-bis(1H-pyrazol-1-yl)pyridine-4-carboxylic acid on Ag(111). The network cavity snugly hosts the chemically modified guest, bestows enantiomorphic adsorption and allows selective rotational motions. Temperature-dependent scanning tunnelling microscopy studies revealed distinct anchoring orientations of the guest unit switching with a 0.95 eV thermal barrier. H-bonding between the guest and the host transiently stabilises the rotating guest, as the flapper on a raffle wheel. Density functional theory investigations unravel the detailed molecular pirouette of the guest and how the energy landscape is determined by H-bond formation and breakage. The origin of the guest's enantiodirected, dynamic anchoring lies in the specific interplay of the kagome network and the silver surface.

14.
Methods Mol Biol ; 2290: 253-270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34009595

RESUMO

Sorghum is a versatile crop cultivated since time immemorial. It fulfills the basic needs of mankind in the contest of food, feed, fodder, nutrition, and pharmaceutical uses. Now it adds one more paramount importance as a second-generation biofuel. It offers ethanol from grain, stem (sweet sorghum), and biomass (lignocellulose), and the previous one is discouraging because of food versus fuel conflict. However sorghum lignocellulosic biofuel are gaining momentum in order to conserve nature from depleting first-generation fuel. This chapter describes interdisciplinary approaches/methods involving understanding the genetics of biofuel traits, formulating suitable breeding strategies and seed enhancement techniques to achieve higher productivity in marginal lands in order to avoid food vs. fuel conflict, and finally realization of bioethanol by involving bioengineering process. Many reviews, worldwide researches, and policy papers accepted that sorghum has tremendous potential to be used as a crop of biofuel production.


Assuntos
Biocombustíveis/análise , Sorghum/química , Sorghum/metabolismo , Bioengenharia/métodos , Biomassa , Botânica , Genética , Melhoramento Vegetal/métodos , Energia Renovável/economia , Sementes/genética , Sorghum/genética , Tecnologia/métodos , Tecnologia/tendências
15.
Nat Commun ; 12(1): 2152, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846323

RESUMO

The success of the emerging field of solid-state optical quantum information processing (QIP) critically depends on the access to resonant optical materials. Rare-earth ion (REI)-based molecular systems, whose quantum properties could be tuned taking advantage of molecular engineering strategies, are one of the systems actively pursued for the implementation of QIP schemes. Herein, we demonstrate the efficient polarization of ground-state nuclear spins-a fundamental requirement for all-optical spin initialization and addressing-in a binuclear Eu(III) complex, featuring inhomogeneously broadened 5D0 → 7F0 optical transition. At 1.4 K, long-lived spectral holes have been burnt in the transition: homogeneous linewidth (Γh) = 22 ± 1 MHz, which translates as optical coherence lifetime (T2opt) = 14.5 ± 0.7 ns, and ground-state spin population lifetime (T1spin) = 1.6 ± 0.4 s have been obtained. The results presented in this study could be a progressive step towards the realization of molecule-based coherent light-spin QIP interfaces.

16.
Angew Chem Int Ed Engl ; 60(14): 7502-7521, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-31769131

RESUMO

Spin-crossover (SCO) active transition metal complexes are an important class of switchable molecular materials due to their bistable spin-state switching characteristics at or around room temperature. Vacuum-sublimable SCO complexes are a subclass of SCO complexes suitable for fabricating ultraclean spin-switchable films desirable for applications, especially in molecular electronics/spintronics. Consequently, on-surface SCO of thin-films of sublimable SCO complexes have been studied employing spectroscopy and microscopy techniques, and results of fundamental and technological importance have been obtained. This Review provides complete coverage of advances made in the field of vacuum-sublimable SCO complexes: progress made in the design and synthesis of sublimable functional SCO complexes, on-surface SCO of molecular and multilayer thick films, and various molecular and thin-film device architectures based on the sublimable SCO complexes.

17.
ACS Appl Mater Interfaces ; 10(37): 31580-31585, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30136570

RESUMO

One promising route toward encoding information is to utilize the two stable electronic states of a spin crossover molecule. Although this property is clearly manifested in transport across single molecule junctions, evidence linking charge transport across a solid-state device to the molecular film's spin state has thus far remained indirect. To establish this link, we deploy materials-centric and device-centric operando experiments involving X-ray absorption spectroscopy. We find a correlation between the temperature dependencies of the junction resistance and the Fe spin state within the device's [Fe(H2B(pz)2)2(NH2-phen)] molecular film. We also factually observe that the Fe molecular site mediates charge transport. Our dual operando studies reveal that transport involves a subset of molecules within an electronically heterogeneous spin crossover film. Our work confers an insight that substantially improves the state-of-the-art regarding spin crossover-based devices, thanks to a methodology that can benefit device studies of other next-generation molecular compounds.

18.
BMC Microbiol ; 18(1): 1, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29433435

RESUMO

BACKGROUND: Renewable energy for sustainable development is a subject of a worldwide debate since continuous utilization of non-renewable energy sources has a drastic impact on the environment and economy; a search for alternative energy resources is indispensable. Microalgae are promising and potential alternate energy resources for biodiesel production. Thus, our efforts were focused on surveying the natural diversity of microalgae for the production of biodiesel. The present study aimed at identification, isolation, and characterization of oleaginous microalgae from shola forests of Nilgiri Biosphere Reserve (NBR), the biodiversity hot spot of India, where the microalgal diversity has not yet been systematically investigated. RESULTS: Overall the higher biomass yield, higher lipid accumulation and thermotolerance observed in the isolated microalgal strains have been found to be the desirable traits for the efficient biodiesel production. Species composition and diversity analysis yielded ten potential microalgal isolates belonging to Chlorophyceae and Cyanophyceae classes. The chlorophytes exhibited higher growth rate, maximum biomass yield, and higher lipid accumulation than Cyanophyceae. Among the chlorophytes, the best performing strains were identified and represented by Acutodesmus dissociatus (TGA1), Chlorella sp. (TGA2), Chlamydomonadales sp. (TGA3) and Hindakia tetrachotoma (PGA1). The Chlamydomonadales sp. recorded with the highest growth rate, lipid accumulation and biomass yield of 0.28 ± 0.03 day-1 (µexp), 29.7 ± 0.69% and 134.17 ± 16.87 mg L-1 day-1, respectively. It was also found to grow well at various temperatures, viz., 25 °C, 35 °C, and 45 °C, indicating its suitability for open pond cultivation. The fatty acid methyl ester (FAME) analysis of stationary phase cultures of selected four algal strains by tandem mass spectrograph showed C16:0, C18:1 and C18:3 as dominant fatty acids suitable for biodiesel production. All the three strains except for Hindakia tetrachotoma (PGA1) recorded higher carbohydrate content and were considered as potential feed stocks for biodiesel production through hydrothermal liquefaction technology (HTL). CONCLUSIONS: In conclusion, the present investigation is a first systematic study on the microalgal diversity of soil and water samples from selected sites of NBR. The study resulted in isolation and characterization of ten potent oleaginous microalgae and found four cultures as promising feed stocks for biodiesel production. Of the four microalgae, Chlamydomonadales sp. (TGA3) was found to be significantly thermo-tolerant and can be considered as promising feedstock for biodiesel production.


Assuntos
Biocombustíveis , Microalgas/crescimento & desenvolvimento , Microalgas/isolamento & purificação , Microalgas/metabolismo , Biodiversidade , Biomassa , Carboidratos/análise , Chlorella , Meios de Cultura , Ésteres/análise , Ácidos Graxos/análise , Florestas , Concentração de Íons de Hidrogênio , Índia , Lipídeos/análise , Microalgas/classificação , Filogenia , Proteínas/análise , RNA Ribossômico 18S/genética , Microbiologia do Solo , Temperatura , Volvocida , Microbiologia da Água
19.
Adv Mater ; 30(11)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29356142

RESUMO

The realization of spin-crossover (SCO)-based applications requires study of the spin-state switching characteristics of SCO complex molecules within nanostructured environments, especially on surfaces. Except for a very few cases, the SCO of a surface-bound thin molecular film is either quenched or heavily altered due to: (i) molecule-surface interactions and (ii) differing intermolecular interactions in films relative to the bulk. By fabricating SCO complexes on a weakly interacting surface, the interfacial quenching problem is tackled. However, engineering intermolecular interactions in thin SCO active films is rather difficult. Here, a molecular self-assembly strategy is proposed to fabricate thin spin-switchable surface-bound films with programmable intermolecular interactions. Molecular engineering of the parent complex system [Fe(H2 B(pz)2 )2 (bpy)] (pz = pyrazole, bpy = 2,2'-bipyridine) with a dodecyl (C12 ) alkyl chain yields a classical amphiphile-like functional and vacuum-sublimable charge-neutral FeII complex, [Fe(H2 B(pz)2 )2 (C12 -bpy)] (C12 -bpy = dodecyl[2,2'-bipyridine]-5-carboxylate). Both the bulk powder and 10 nm thin films sublimed onto either quartz glass or SiOx surfaces of the complex show comparable spin-state switching characteristics mediated by similar lamellar bilayer like self-assembly/molecular interactions. This unprecedented observation augurs well for the development of SCO-based applications, especially in molecular spintronics.

20.
Dalton Trans ; 46(30): 9765-9768, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28721413

RESUMO

A simple "isomer-like" variation of the spacer group in a set of Fe(ii) spin crossover (SCO) complexes designed to probe spin state dependence of electrical conductivity in graphene-based molecular spintronic junctions led to the observation of remarkable variations in the thermal- and light-induced magnetic characteristics, paving a simple route for the design of functional SCO complexes with different temperature switching regimes based on a 2,6-bis(pyrazol-1-yl)pyridine ligand skeleton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA