Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JPEN J Parenter Enteral Nutr ; 47(7): 911-919, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376765

RESUMO

BACKGROUND: Previously, we revealed that coadministration of particular enteral nutrients (ENs) decreases plasma concentrations and gastric absorption of phenytoin (PHT), an antiepileptic drug, in rats; however, the mechanism has not been clarified. METHODS: We measured the permeability rate of PHT using a Caco-2 cell monolayer as a human intestinal absorption model with casein, soy protein, simulated gastrointestinal digested casein protein (G-casein or P-casein) or simulated gastrointestinal digested soy protein (G-soy or P-soy), dextrin, sucrose, degraded guar gum, indigestible dextrin, calcium, and magnesium, which are abundant in the ENs, and measured the solution's properties. RESULTS: We demonstrated that casein (40 mg/ml), G-soy or P-soy (10 mg/ml), and dextrin (100 mg/ml) significantly decreased the permeability rate of PHT compared with the control. By contrast, G-casein or P-casein significantly increased the permeability rate of PHT. We also found that the PHT binding rate to casein 40 mg/ml was 90%. Furthermore, casein 40 mg/ml and dextrin 100 mg/ml have high viscosity. Moreover, G-casein and P-casein significantly decreased the transepithelial electrical resistance of Caco-2 cell monolayers compared with casein and the control. CONCLUSION: Casein, digested soy protein, and dextrin decreased the gastric absorption of PHT. However, digested casein decreased PHT absorption by reducing the strength of tight junctions. The composition of ENs may affect the absorption of PHT differently, and these findings would aid in the selection of ENs for orally administered PHT.


Assuntos
Caseínas , Fenitoína , Ratos , Humanos , Animais , Proteínas de Soja , Absorção Gástrica , Células CACO-2 , Dextrinas , Nutrientes
2.
Int J Med Sci ; 19(5): 789-795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693745

RESUMO

The interaction between enteral nutrients (ENs) and drugs co-administered through a nasogastric (NG) tube reportedly affects the absorption and resultant plasma concentrations of the respective drugs. However, the gastrointestinal absorption of carbamazepine (CBZ), an antiepileptic drug, co-administered with liquid ENs through an NG tube has not been clarified. In this study, we measured the recovery rate (%) of CBZ (Tegretol® powder) passed through an NG tube when co-administered with distilled water or ENs (F2α®, Racol® NF, Ensure Liquid®, and Renalen® LP) of different compositions, frequently used in Japan. We also measured the plasma CBZ level in 26 rats after oral co-administration of CBZ with liquid ENs. The CBZ recovery rate was close to 100% in rats of all EN groups after passage through the NG tube. Furthermore, CBZ area under the plasma concentration-time curve from time zero to 9 h (AUC0→9h) of the Ensure liquid® group decreased compared with that of control group (P < 0.05) and Renalen® LP group (P < 0.01). However, the AUC0→9h of CBZ remained unchanged when co-administered with Ensure liquid® 2 h after initial CBZ administration. In conclusion, the co-administration of CBZ with Ensure Liquid® caused a reduction in the absorption of CBZ from the gastrointestinal tract, without adsorption on the NG tube. The administration of Ensure Liquid® 2 h after CBZ is a way to prevent a decrease in plasma CBZ concentration. Our findings suggest that carefully monitoring the plasma levels of CBZ is necessary in co-administation with Ensure liquid® to prevent the unintended effects of the interaction between CBZ and liquid EN.


Assuntos
Anticonvulsivantes , Carbamazepina , Administração Oral , Animais , Área Sob a Curva , Nutrientes , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...