Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1211899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029259

RESUMO

The presence of pathogens and the state of diseases, particularly skin diseases, may alter the composition of human skin microbiome. HIV infection has been reported to impair gut microbiome that leads to severe consequences. However, with cutaneous manifestations, that can be life-threatening, due to the opportunistic pathogens, little is known whether HIV infection might influence the skin microbiome and affect the skin homeostasis. This study catalogued the profile of skin microbiome of healthy Cameroonians, at three different skin sites, and compared them to the HIV-infected individuals. Taking advantage on the use of molecular assay coupled with next-generation sequencing, this study revealed that alpha-diversity of the skin microbiome was higher and beta-diversity was altered significantly in the HIV-infected Cameroonians than in the healthy ones. The relative abundance of skin microbes such as Micrococcus and Kocuria species was higher and Cutibacterium species was significantly lower in HIV-infected people, indicating an early change in the human skin microbiome in response to the HIV infection. This phenotypical shift was not related to the number of CD4 T cell count thus the cause remains to be identified. Overall, these data may offer an important lead on the role of skin microbiome in the determination of cutaneous disease state and the discovery of safe pharmacological preparations to treat microbial-related skin disorders.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Microbiota , Humanos , Infecções por HIV/tratamento farmacológico , Camarões , Pele
3.
PLoS Genet ; 19(4): e1010709, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37023169

RESUMO

Commensal microbes in animals have a profound impact on tissue homeostasis, stress resistance, and ageing. We previously showed in Drosophila melanogaster that Acetobacter persici is a member of the gut microbiota that promotes ageing and shortens fly lifespan. However, the molecular mechanism by which this specific bacterial species changes lifespan and physiology remains unclear. The difficulty in studying longevity using gnotobiotic flies is the high risk of contamination during ageing. To overcome this technical challenge, we used a bacteria-conditioned diet enriched with bacterial products and cell wall components. Here, we demonstrate that an A. persici-conditioned diet shortens lifespan and increases intestinal stem cell (ISC) proliferation. Feeding adult flies a diet conditioned with A. persici, but not with Lactiplantibacillus plantarum, can decrease lifespan but increase resistance to paraquat or oral infection of Pseudomonas entomophila, indicating that the bacterium alters the trade-off between lifespan and host defence. A transcriptomic analysis using fly intestine revealed that A. persici preferably induces antimicrobial peptides (AMPs), while L. plantarum upregulates amidase peptidoglycan recognition proteins (PGRPs). The specific induction of these Imd target genes by peptidoglycans from two bacterial species is due to the stimulation of the receptor PGRP-LC in the anterior midgut for AMPs or PGRP-LE from the posterior midgut for amidase PGRPs. Heat-killed A. persici also shortens lifespan and increases ISC proliferation via PGRP-LC, but it is not sufficient to alter the stress resistance. Our study emphasizes the significance of peptidoglycan specificity in determining the gut bacterial impact on healthspan. It also unveils the postbiotic effect of specific gut bacterial species, which turns flies into a "live fast, die young" lifestyle.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/fisiologia , Longevidade/genética , Peptidoglicano , Bactérias/genética , Homeostase , Amidoidrolases
4.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499123

RESUMO

Allopathic medicines play a key role in the prevention and treatment of diseases. However, long-term consumption of these medicines may cause serious undesirable effects that harm human health. Plant-based medicines have emerged as alternatives to allopathic medicines because of their rare side effects. They contain several compounds that have the potential to improve health and treat diseases in humans, including their function as immunomodulators to treat immune-related diseases. Thus, the discovery of potent and safe immunomodulators from plants is gaining considerable research interest. Recently, Drosophila has gained prominence as a model organism in evaluating the efficacy of plant and plant-derived substances. Drosophila melanogaster "fruit fly" is a well-known, high-throughput model organism that has been used to study different biological aspects of development and diseases for more than 110 years. Most developmental and cell signaling pathways and 75% of human disease-related genes are conserved between humans and Drosophila. Using Drosophila, one can easily examine the pharmacological effects of plants/plant-derived components by employing a variety of tests in flies, such as survival, anti-inflammatory, antioxidant, and cell death tests. This review focused on D. melanogaster's potential for identifying immunomodulatory features associated with plants/plant-derived components.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Humanos , Drosophila melanogaster/fisiologia , Modelos Animais , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Adjuvantes Imunológicos/farmacologia
5.
Sci Rep ; 12(1): 1364, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079063

RESUMO

The commensal microbes of the skin have a significant impact on dermal physiology and pathophysiology. Racial and geographical differences in the skin microbiome are suggested and may play a role in the sensitivity to dermatological disorders, including infectious diseases. However, little is known about the skin microbiome profiles of people living in Central Africa, where severe tropical infectious diseases impose a burden on the inhabitants. This study provided the skin profiles of healthy Cameroonians in different body sites and compared them to healthy Japanese participants. The skin microbiome of Cameroonians was distinguishable from that of Japanese in all skin sites examined in this study. For example, Micrococcus was predominantly found in skin samples of Cameroonians but mostly absent in Japanese skin samples. Instead, the relative abundance of Cutibacterium species was significantly higher in healthy Japanese. Principal coordinate analysis of beta diversity showed that the skin microbiome of Cameroonians formed different clusters from Japanese, suggesting a substantial difference in the microbiome profiles between participants of both countries. In addition, the alpha diversity in skin microbes was higher in Cameroonians than Japanese participants. These data may offer insights into the determinant factors responsible for the distinctness of the skin microbiome of people living in Central Africa and Asia.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Pele/microbiologia , Camarões , Japão
6.
Dis Model Mech ; 14(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448472

RESUMO

An early-life inflammatory response is associated with risks of age-related pathologies. How transient immune signalling activity during animal development influences life-long fitness is not well understood. Using Drosophila as a model, we find that activation of innate immune pathway Immune deficiency (Imd) signalling in the developing larvae increases adult starvation resistance, decreases food intake and shortens organismal lifespan. Interestingly, lifespan is shortened by Imd activation in the larval gut and fat body, whereas starvation resistance and food intake are altered by that in neurons. The adult flies that developed with Imd activation show sustained Imd activity in the gut, despite complete tissue renewal during metamorphosis. The larval Imd activation increases an immunostimulative bacterial species, Gluconobacter sp., in the gut microbiome, and this dysbiosis is persistent to adulthood. Removal of gut microbiota by antibiotics in the adult fly mitigates intestinal immune activation and rescues the shortened lifespan. This study demonstrates that early-life immune activation triggers long-term physiological changes, highlighted as an irreversible alteration in gut microbiota, prolonged inflammatory intestine and concomitant shortening of the organismal lifespan.


Assuntos
Disbiose , Microbioma Gastrointestinal , Animais , Drosophila , Imunidade Inata , Longevidade
7.
Biochem Biophys Res Commun ; 547: 75-81, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33610043

RESUMO

Excessive melanin formation has been linked to various skin disorders such as hyperpigmentation and skin cancer. Tyrosinase is the most prominent target for inhibitors of melanin production. In this study, we investigated whether arbutin and its prodrug, arbutin undecylenic acid ester, might inhibit phenoloxidase (PO), a tyrosinase-like enzyme. Molecular docking simulation results suggested that arbutin and arbutin undecylenic acid ester can bind to the substrate-binding pocket of PO. Arbutin undecylenic acid ester with an IC50 6.34 mM was effective to inhibit PO compared to arbutin (IC50 29.42 mM). In addition, arbutin undecylenic acid ester showed low cytotoxicity in Drosophila S2 cells and the compound inhibited the melanization reaction. Therefore, the results of this study have demonstrated that arbutin undecylenic acid ester as a potential inhibitor of PO. We successfully designed a new platform utilizing Drosophila melanogaster and Bombyx mori as animal models propounding fast, cheap, and high effectiveness in method to screen tyrosinase inhibitors.


Assuntos
Arbutina/análogos & derivados , Arbutina/química , Arbutina/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/química , Ácidos Undecilênicos/química , Ácidos Undecilênicos/farmacologia , Animais , Bombyx , Drosophila melanogaster , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/metabolismo , Melaninas/biossíntese , Simulação de Acoplamento Molecular
8.
iScience ; 24(12): 103473, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34988396

RESUMO

The nuclear factor-kappa B (NF-κB) pathway is an evolutionarily conserved signaling pathway that plays a central role in immune responses and inflammation. Here, we show that Drosophila NF-κB signaling is activated via a pathway in parallel with the Toll receptor by receptor-type guanylate cyclase, Gyc76C. Gyc76C produces cyclic guanosine monophosphate (cGMP) and modulates NF-κB signaling through the downstream Tollreceptor components dMyd88, Pelle, Tube, and Dif/Dorsal (NF-κB). The cGMP signaling pathway comprises a membrane-localized cGMP-dependent protein kinase (cGK) called DG2 and protein phosphatase 2A (PP2A) and is crucial for host survival against Gram-positive bacterial infections in Drosophila. A membrane-bound cGK, PRKG2, also modulates NF-κB activation via PP2A in human cells, indicating that modulation of NF-κB activation in innate immunity by the cGMP signaling pathway is evolutionarily conserved.

9.
Elife ; 92020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33077027

RESUMO

Stem cells fuel the development and maintenance of tissues. Many studies have addressed how local signals from neighboring niche cells regulate stem cell identity and their proliferative potential. However, the regulation of stem cells by tissue-extrinsic signals in response to environmental cues remains poorly understood. Here we report that efferent octopaminergic neurons projecting to the ovary are essential for germline stem cell (GSC) increase in response to mating in female Drosophila. The neuronal activity of the octopaminergic neurons is required for mating-induced GSC increase as they relay the mating signal from sex peptide receptor-positive cholinergic neurons. Octopamine and its receptor Oamb are also required for mating-induced GSC increase via intracellular Ca2+ signaling. Moreover, we identified Matrix metalloproteinase-2 as a downstream component of the octopamine-Ca2+ signaling to induce GSC increase. Our study provides a mechanism describing how neuronal system couples stem cell behavior to environmental cues through stem cell niche signaling.


Stem cells have the unique ability to mature into the various, specialized groups of cells required for organisms to work properly. Local signals released by the tissues immediately surrounding stem cells usually trigger this specialization process. However, recent studies have revealed that external signals, such as hormones or neurotransmitters (the chemicals used by nerve cells to communicate), can also control the fate of stem cells. This is particularly the case during development, or in response to events such as injury. In the right conditions, germline stem cells can specialize into the egg or sperm required for many animals to reproduce. In fruit flies for example, the semen contains proteins that activate a cascade of molecular events in the female nervous system, ultimately resulting in female germline stem cells multiplying in the ovaries after mating. Yet, exactly how this process takes place was still unclear. To investigate this question, Yoshinari et al. focused on nerve cells in the fruit fly ovary which produce a neurotransmitter called octopamine. The experiments assessed changes in the ovaries of female fruit flies after mating, piecing together the sequence of events that activate germline stem cells. This showed that first, mating triggers the release of octopamine from the nerve cells. In turn, this activates a protein called Oamb, which is studded through the membrane of cells present around germline stem cells. Turning on Oamb prompts a cascade of molecular events which include an enzyme called Matrix metalloproteinase 2 regulating the signal sent from the local environment to germline stem cells. As mammals use a neurotransmitter similar to octopamine, future fruit fly studies could shed light on how neurotransmitters activate stem cells in other animals. Ultimately, unravelling the way external signals trigger the specialization process may offer insight into how diseases arise from uncontrolled stem cell activity.


Assuntos
Proliferação de Células , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Octopamina/fisiologia , Comportamento Sexual Animal , Transdução de Sinais , Células-Tronco/fisiologia , Animais , Feminino
10.
Front Immunol ; 11: 520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292407

RESUMO

Pseudomonas entomophila is a highly pathogenic bacterium that infects insects. It is also used as a suitable model pathogen to analyze Drosophila's innate immunity. P. entomophila's virulence is largely derived from Monalysin, a ß-barrel pore-forming toxin that damages Drosophila tissues, inducing necrotic cell death. Here we report the first and efficient purification of endogenous Monalysin and its characterization. Monalysin is successfully purified as a pro-form, and trypsin treatment results in a cleaved mature form of purified Monalysin which kills Drosophila cell lines and adult flies. Electrophysiological measurement of Monalysin in a lipid membrane with an on-chip device confirms that Monalysin forms a pore, in a cleavage-dependent manner. This analysis also provides a pore-size estimate of Monalysin using current amplitude for a single pore and suggests lipid preferences for the insertion. Atomic Force Microscope (AFM) analysis displays its structure in a solution and shows that active-Monalysin is stable and composed of an 8-mer complex; this observation is consistent with mass spectrometry data. AFM analysis also shows the 8-mer structure of active-Monalysin in a lipid bilayer, and real-time imaging demonstrates the moment at which Monalysin is inserted into the lipid membrane. These results collectively suggest that endogenous Monalysin is indeed a pore-forming toxin composed of a rigid structure before pore formation in the lipid membrane. The endogenous Monalysin characterized in this study could be a desirable tool for analyzing host defense mechanisms against entomopathogenic bacteria producing damage-inducing toxins.


Assuntos
Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Drosophila/microbiologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Infecções por Pseudomonas/imunologia , Pseudomonas/fisiologia , Animais , Apoptose , Toxinas Bacterianas/isolamento & purificação , Linhagem Celular , Drosophila/citologia , Humanos , Imunidade Inata , Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Microscopia de Força Atômica , Proteínas Citotóxicas Formadoras de Poros/isolamento & purificação , Pseudomonas/patogenicidade , Infecções por Pseudomonas/transmissão , Virulência
11.
Nat Commun ; 11(1): 1830, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286350

RESUMO

A synthetic biology method based on heterologous biosynthesis coupled with genome mining is a promising approach for increasing the opportunities to rationally access natural product with novel structures and biological activities through total biosynthesis and combinatorial biosynthesis. Here, we demonstrate the advantage of the synthetic biology method to explore biological activity-related chemical space through the comprehensive heterologous biosynthesis of fungal decalin-containing diterpenoid pyrones (DDPs). Genome mining reveals putative DDP biosynthetic gene clusters distributed in five fungal genera. In addition, we design extended DDP pathways by combinatorial biosynthesis. In total, ten DDP pathways, including five native pathways, four extended pathways and one shunt pathway, are heterologously reconstituted in a genetically tractable heterologous host, Aspergillus oryzae, resulting in the production of 22 DDPs, including 15 new analogues. We also demonstrate the advantage of expanding the diversity of DDPs to probe various bioactive molecules through a wide range of biological evaluations.


Assuntos
Diterpenos/farmacologia , Fungos/química , Naftalenos/farmacologia , Pironas/farmacologia , Biologia Sintética , Peptídeos beta-Amiloides/metabolismo , Animais , Fármacos Anti-HIV/farmacologia , Aspergillus/química , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Proliferação de Células/efeitos dos fármacos , Diterpenos/química , Drosophila/efeitos dos fármacos , Fungos/genética , Genoma Fúngico , HIV-1/efeitos dos fármacos , Humanos , Células MCF-7 , Naftalenos/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Agregados Proteicos , Pironas/química , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Estereoisomerismo
12.
Front Immunol ; 11: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32063902

RESUMO

Innate immunity is an evolutionarily conserved host defense system against infections. The fruit fly Drosophila relies solely on innate immunity for infection defense, and the conservation of innate immunity makes Drosophila an ideal model for understanding the principles of innate immunity, which comprises both humoral and cellular responses. The mechanisms underlying the coordination of humoral and cellular responses, however, has remained unclear. Previously, we identified Gyc76C, a receptor-type guanylate cyclase that produces cyclic guanosine monophosphate (cGMP), as an immune receptor in Drosophila. Gyc76C mediates the induction of antimicrobial peptides for humoral responses by a novel cGMP pathway including a membrane-localized cGMP-dependent protein kinase, DG2, through downstream components of the Toll receptor such as dMyD88. Here we show that Gyc76C is also required for the proliferation of blood cells (hemocytes) for cellular responses to bacterial infections. In contrast to Gyc76C-dependent antimicrobial peptide induction, Gyc76C-dependent hemocyte proliferation is meditated by a small GTPase, Ras85D, and not by DG2 or dMyD88, indicating that Gyc76C mediates the cellular and humoral immune responses in distinct ways.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/imunologia , Guanilato Ciclase/metabolismo , Imunidade Celular , Imunidade Humoral , Receptores de Superfície Celular/metabolismo , Animais , Animais Geneticamente Modificados , Proliferação de Células/genética , Células Cultivadas , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , GTP Fosfo-Hidrolases/metabolismo , Bactérias Gram-Positivas , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Guanilato Ciclase/genética , Guanilato Ciclase/imunologia , Hemócitos/metabolismo , Hemócitos/microbiologia , Imunidade Inata , Interferência de RNA , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Proteínas ras/metabolismo
13.
J Biochem ; 166(3): 213-221, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251338

RESUMO

Central nervous system (CNS)-related disorders, including neurodegenerative diseases, are common but difficult to treat. As effective medical interventions are limited, those diseases will likely continue adversely affecting people's health. There is evidence that the hyperactivation of innate immunity is a hallmark of most neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and polyglutamine diseases. In mammalian and fly CNS, the presence of noninfectious ligands, including danger-associated molecular patterns, is recognized by (micro)glial cells, inducing the expression of proinflammatory cytokines. Such inflammation may contribute to the onset and progression of neurodegenerative states. Studies using fruit flies have shed light on the types of signals, receptors and cells responsible for inducing the inflammation that leads to neurodegeneration. Researchers are using fly models to assess the mechanisms of sterile inflammation in the brain and its link to progressive neurodegeneration. Given the similarity of its physiological system and biochemical function to those of mammals, especially in activating and regulating innate immune signalling, Drosophila can be a versatile model system for studying the mechanisms and biological significance of sterile inflammatory responses in the pathogenesis of neurodegenerative diseases. Such knowledge would greatly facilitate the quest for a novel effective treatment for neurodegenerative diseases.


Assuntos
Modelos Animais de Doenças , Drosophila , Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Drosophila/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/imunologia
14.
Front Biosci (Landmark Ed) ; 24(8): 1390-1400, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31136986

RESUMO

In the past decades, much has been learned about the protective signatures of innate immune responses during the course of infections. However, it is now evident that induction of immune effectors also commonly occurs in the absence of pathogenic cues. Such an event, termed sterile inflammation, has been linked to several debilitating acute and chronic host conditions. Using Drosophila melanogaster as a simple yet powerful model organism, identification of diverse sets of damage-associated molecular patterns and their corresponding surface and/or inside pattern recognition receptors on the cells, as well as elucidation of their significant roles in the host physiology and pathological conditions related to sterile inflammation, have been continuously reported. In addition, revelation of non-pathogenic molecular triggers leading to the orchestration of unnecessary activation of inflammatory responses has been a subject of interest. Here, we review decades of efforts to elucidate the molecular mechanisms responsible in the emergence of sterile inflammation. The characterization of the respective contributing factors, including recent demonstration of pinching as a novel sterile-stimuli in Drosophila, is also discussed.


Assuntos
Drosophila melanogaster/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Transdução de Sinais/imunologia , Animais , Proteínas de Drosophila/imunologia , Proteínas de Drosophila/metabolismo , Humanos , Inflamassomos/imunologia , Larva/imunologia , Estresse Mecânico
15.
Biochem Biophys Res Commun ; 508(1): 332-337, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30497778

RESUMO

The Drosophila Toll pathway is involved in embryonic development, innate immunity, and cell-cell interactions. However, compared to the mammalian Toll-like receptor innate immune pathway, its intracellular signaling mechanisms are not fully understood. We have previously performed a series of ex vivo genome-wide RNAi screenings to identify genes required for the activation of the Toll pathway. In this study, we have conducted an additional genome-wide RNAi screening using the overexpression of Tube, an adapter molecule in the Toll pathway, and have performed a co-immunoprecipitation assay to identify components present in the dMyd88-Tube complex. Based on the results of these assays, we have performed a bioinformatic analysis, and describe candidate molecules and post-translational modifications that could be involved in Drosophila Toll signaling.


Assuntos
Drosophila/imunologia , Imunidade Inata/imunologia , Imunoprecipitação , Espectrometria de Massas , Interferência de RNA , Receptores Toll-Like/imunologia , Animais , Transdução de Sinais/imunologia
16.
Drug Discov Ther ; 13(6): 360-364, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31956235

RESUMO

Characterization of microbial communities in the skin in healthy individuals and diseased patients holds valuable information for understanding pathogenesis of skin diseases and as a source for developing novel therapies. Notably, resources regarding skin microbiome are limited in developing countries where skin disorders from infectious diseases are extremely common. A simple method for sample collection and processing for skin microbiome studies in such countries is crucial. The aim of this study is to confirm the feasibility of collecting skin microbiota from individuals in Yaoundé, a capital city of Cameroon, and subsequent extraction of bacterial DNA in a resource limited setting. Skin swabs from several individuals in Yaoundé were successfully obtained, and sufficient amount of bacterial 16S ribosomal RNA-coding DNA was collected, which was confirmed by quantitative PCR. The median copy number of 16S ribosomal RNA gene varied across participants and collection sites, with significantly more copies in samples collected from the forehead compared to the left and right forearm, or back. This study demonstrated that collecting surface skin microbes using our swabbing method is feasible in a developing country. We further showed that even with limited resources, we could collect sufficient amount of skin microbiota from the inhabitants in Yaoundé where no studies of skin microbiome were reported, which can be passed to further metagenomic analysis such as next generation sequencing.


Assuntos
Bactérias/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/genética , Pele/microbiologia , Manejo de Espécimes/métodos , Adulto , Bactérias/genética , Camarões , DNA Bacteriano/genética , Estudos de Viabilidade , Feminino , Humanos , Masculino , Microbiota , Pessoa de Meia-Idade , Análise de Sequência de DNA , Manejo de Espécimes/instrumentação , Adulto Jovem
17.
Biochem Biophys Res Commun ; 506(3): 510-515, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30361090

RESUMO

The Drosophila Toll-1 receptor is involved in embryonic development, innate immunity, and tissue homeostasis. Currently, as a ligand for the Toll-1 receptor, only Spätzle (Spz) has been identified and characterized. We previously reported that Drosophila larva-derived tissue extract contains ligand activity for the Toll-1 receptor, which differs from Spz based on the observation that larval extract prepared from spz mutants possessed full ligand activity. Here, we demonstrate that Spz5, a member of the Spz family of proteins, functions as a ligand for the Toll-1 receptor. Processing of Spz5 by Furin protease, which is known to be important for ligand activity of Spz5 to Toll-6, is not required for its function to the Toll-1 receptor. By generating a spz5 null mutant, we further showed that the Toll-1 ligand activity of larva-derived extract is mainly derived from Spz5. Finally, we found a genetic interaction between spz and spz5 in terms of developmental processes. This study identified a novel ligand for the Drosophila Toll-1 receptor, providing evidence that Toll-1 is a multi-ligand receptor, similar to the mammalian Toll-like receptor.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores Toll-Like/metabolismo , Animais , Epistasia Genética , Larva/metabolismo , Ligantes , Proteólise , Extratos de Tecidos
18.
Biochem Biophys Res Commun ; 495(1): 395-400, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29108998

RESUMO

In this study, fruit fly of the genus Drosophila is utilized as a suitable model animal to investigate the molecular mechanisms of innate immunity. To combat orally transmitted pathogenic Gram-negative bacteria, the Drosophila gut is armed with the peritrophic matrix, which is a physical barrier composed of chitin and glycoproteins: the Duox system that produces reactive oxygen species (ROS), which in turn sterilize infected microbes, and the IMD pathway that regulates the expression of antimicrobial peptides (AMPs), which in turn control ROS-resistant pathogens. However, little is known about the defense mechanisms against Gram-positive bacteria in the fly gut. Here, we show that the peritrophic matrix protects Drosophila against Gram-positive bacteria S. aureus. We also define the few roles of ROS in response to the infection and show that the IMD pathway is required for the clearance of ingested microbes, possibly independently from AMP expression. These findings provide a new aspect of the gut defense system of Drosophila, and helps to elucidate the processes of gut-microbe symbiosis and pathogenesis.


Assuntos
Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Interações Hospedeiro-Patógeno , Transdução de Sinais , Staphylococcus aureus/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Drosophila/imunologia , Feminino , Imunidade Inata , Masculino , Espécies Reativas de Oxigênio/imunologia
19.
J Vis Exp ; (126)2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28809832

RESUMO

The molecular mechanisms underlying the phagocytosis of apoptotic cells need to be elucidated in more detail because of its role in immune and inflammatory intractable diseases. We herein developed an experimental method to investigate phagocytosis quantitatively using the fruit fly Drosophila, in which the gene network controlling engulfment reactions is evolutionally conserved from mammals. In order to accurately detect and count engulfing and un-engulfing phagocytes using whole animals, Drosophila embryos were homogenized to obtain dispersed cells including phagocytes and apoptotic cells. The use of dispersed embryonic cells enables us to measure in vivo phagocytosis levels as if we performed an in vitro phagocytosis assay in which it is possible to observe all phagocytes and apoptotic cells in whole embryos and precisely quantify the level of phagocytosis. We confirmed that this method reproduces those of previous studies that identified the genes required for the phagocytosis of apoptotic cells. This method allows the engulfment of dead cells to be analyzed, and when combined with the powerful genetics of Drosophila, will reveal the complex phagocytic reactions comprised of the migration, recognition, engulfment, and degradation of apoptotic cells by phagocytes.


Assuntos
Apoptose/fisiologia , Técnicas Citológicas/métodos , Drosophila/embriologia , Embrião não Mamífero/citologia , Fagocitose/fisiologia , Animais , Animais Geneticamente Modificados , Técnicas Citológicas/instrumentação , Proteínas de Drosophila/imunologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Hemócitos , Marcação In Situ das Extremidades Cortadas/instrumentação , Marcação In Situ das Extremidades Cortadas/métodos , Masculino , Fagócitos/citologia , Fagócitos/fisiologia , Interferência de RNA , Receptores Depuradores/imunologia
20.
Dis Model Mech ; 10(3): 271-281, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28250052

RESUMO

Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer.


Assuntos
Drosophila melanogaster/imunologia , Imunidade Humoral , Imunidade Inata , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Regulação para Baixo/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/patologia , Hemócitos/metabolismo , Larva/imunologia , Larva/microbiologia , Mutação/genética , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...