Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2403218, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963069

RESUMO

In recent years, the implementation of energy-harvesting technology in medical equipment has attracted significant interest owing to its potential for self-powered and smart healthcare systems. Herein, the integration of a triboelectric nanogenerator (TENG) is proposed into an inhaler for energy-harvesting and smart inhalation monitoring. For this initially, barium sodium niobium oxide (Ba2NaNb5O15) microparticles (BNNO MPs) are synthesized via a facile solid-state synthesis process. The BNNO MPs with ferroelectricity and high dielectric constant are incorporated into polydimethylsiloxane (PDMS) polymer to make BNNO/PDMS composite films (CFs) for TENG fabrication. The fabricated TENG is operated in a contact-separation mode, and its electrical output performance is compared to establish the optimal BNNO MPs concentration. Furthermore, multi-wall carbon nanotubes (MWCNTs), a conductive filler material, are used to enhance the electrical conductivity of the CFs, thereby improving the electrical output performance of the TENG. The robustness/durability of the proposed BNNO-MWCNTs/PDMS CF-based TENG are investigated. The proposed TENG device is demonstrated to harvest electrical energy from mechanical motions via regular human activities and power portable electronics. The TENG is integrated into the inhaler casing to count the number of sprays remaining in the canister, send the notification to a smartphone via Bluetooth, and harvest energy.

2.
Small ; 19(27): e2300535, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37009996

RESUMO

Triboelectric nanogenerators are an emerging energy-scavenging technology that can harvest kinetic energy from various mechanical moments into electricity. The energy generated while humans walk is the most commonly available biomechanical energy. Herein, a multistage consecutively-connected hybrid nanogenerator (HNG) is fabricated and combined with a flooring system (MCHCFS) to efficiently harvest mechanical energy while humans walk. Initially, the electrical output performance of the HNG is optimized by fabricating a prototype device using various strontium-doped barium titanate (Ba1- x Srx TiO3 , BST) microparticles loaded polydimethylsiloxane (PDMS) composite films. The BST/PDMS composite film acts as a negative triboelectric layer that operates against aluminum. Single HNG operated in contact-separation mode could generate an electrical output of ≈280 V, ≈8.5 µA, and ≈90 µC m-2 . The stability and robustness of the fabricated HNG are confirmed and eight similar HNGs are assembled in a 3D-printed MCHCFS. The MCHCFS is specifically designed to distribute applied force on the single HNG to four nearby HNGs. The MCHCFS can be implemented in real-life floors with an enlarged surface area to harvest energy generated while humans walk into direct current electrical output. The MCHCFS is demonstrated as a touch sensor that can be utilized in sustainable path lighting to save enormous electricity waste.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA