Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Anim ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538326

RESUMO

Canavan disease (CD) is a fatal hereditary neurological disorder caused by a mutation in the aspartoacylase (ASPA) gene and characterized by neurological signs and vacuolation in the central nervous system (CNS). The mutation inhibits the hydrolysis of N-acetyl-aspartate (NAA) resulting in accumulation of NAA in the CNS. A new Aspa-knockout rat was generated by transcription activator-like effector nuclease (TALEN) technology. Herein we describe the pathological and morphometrical findings in the brain and spinal cords of Aspa-knockout rats. Although Aspa-knockout rats did not show any neurological signs, vacuolation with swollen axons, hypomyelination, and activated swollen astrocytes were observed mainly in the brainstem reticular formation, ascending and descending motor neuron pathway, and in the olfactory tract. Morphometrical analysis revealed no obvious change in the number of neurons. These changes in the CNS are similar to human CD, suggesting that this animal model would be useful for further study of treatment and understanding the pathophysiology of human CD.

2.
Front Neurosci ; 18: 1263724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384479

RESUMO

Neuroaxonal dystrophy (NAD) is a neurodegenerative disease characterized by spheroid (swollen axon) formation in the nervous system. In the present study, we focused on a newly established autosomal recessive mutant strain of F344-kk/kk rats with hind limb gait abnormalities and ataxia from a young age. Histopathologically, a number of axonal spheroids were observed throughout the central nervous system, including the spinal cord (mainly in the dorsal cord), brain stem, and cerebellum in F344-kk/kk rats. Transmission electron microscopic observation of the spinal cord revealed accumulation of electron-dense bodies, degenerated abnormal mitochondria, as well as membranous or tubular structures in the axonal spheroids. Based on these neuropathological findings, F344-kk/kk rats were diagnosed with NAD. By a positional cloning approach, we identified a missense mutation (V95E) in the Hspa8 (heat shock protein family A (Hsp70) member 8) gene located on chromosome 8 of the F344-kk/kk rat genome. Furthermore, we developed the Hspa8 knock-in (KI) rats with the V95E mutation using the CRISPR-Cas system. Homozygous Hspa8-KI rats exhibited ataxia and axonal spheroids similar to those of F344-kk/kk rats. The V95E mutant HSC70 protein exhibited the significant but modest decrease in the maximum hydrolysis rate of ATPase when stimulated by co-chaperons DnaJB4 and BAG1 in vitro, which suggests the functional deficit in the V95E HSC70. Together, our findings provide the first evidence that the genetic alteration of the Hspa8 gene caused NAD in mammals.

3.
Biochem Biophys Res Commun ; 678: 193-199, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37651888

RESUMO

Severely immunodeficient mice are useful for understanding the pathogenesis of certain tumors and for developing therapeutic agents for such tumors. In addition, engraftment of these mice with human hematopoietic cells can yield information that helps us understand the in vivo molecular mechanisms underlying actual human viral infections. In our present research, we discovered a novel, severely immunodeficient strain of mice having a mutation in exon 57 of the Prkdc gene (PrkdcΔex57/Δex57) in an inbred colony of B10.S/SgSlc mice. Those PrkdcΔex57/Δex57 mice showed thymic hypoplasia and lack of mature T cells and B cells in peripheral lymphoid tissues, resulting in very low levels of production of serum immunoglobulins. In addition, those mice were highly susceptible to influenza viruses due to the lack of acquired immune cells. On the other hand, since they had sufficient numbers of NK cells, they rejected tumor transplants, similarly to Prkdc+/+ mice. Next, we generated Foxn1nu/nuPrkdcΔex57/Δex57Il2rg-/- (NPG) mice on the BALB/cSlc background, which lack all lymphocytes such as T cells, B cells and innate lymphoid cells, including NK cells. As expected, these mice were able to undergo engraftment of human tumor cell lines. These findings suggest that PrkdcΔex57/Δex57 mice will be useful as a novel model of immunodeficiency, while NPG mice will be useful for xenografting of various malignancies.


Assuntos
Imunidade Inata , Síndromes de Imunodeficiência , Humanos , Animais , Camundongos , Células Matadoras Naturais , Linfócitos B , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Proteína Quinase Ativada por DNA
4.
Anim Sci J ; 94(1): e13846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37354025

RESUMO

We previously developed a genotyping method to detect the A1 and A2 alleles of the bovine ß-casein gene. This method required DNA extraction from hair samples. Recently, demand for A2 milk (milk from cows homozygous for the A2 allele) has increased, and dairy farms are required to have certification to produce A2 milk. Here, we describe the development of a new, simple, and sensitive genotyping method for the ß-casein gene that does not require DNA extraction. This method uses the CycleavePCR technique and can amplify the ß-casein gene directly from raw milk samples. Genotypes obtained from the milk samples (n = 27) were completely coincident with those obtained from genomic DNA. In addition, this method could quantify the A1 allele in the milk samples. The limit of detection for the A1 allele in A2 milk was 2%. The copy numbers of the A1 allele corresponding to the 2% detection limit were estimated to be 30.5 ± 24.3 molecules/µL. These findings indicate that this new genotyping method is simple and fast for detecting the A1 allele in milk samples and can therefore be potentially used to certify A2 milk.


Assuntos
Caseínas , Leite , Feminino , Animais , Bovinos/genética , Alelos , Caseínas/genética , Reação em Cadeia da Polimerase/veterinária , Fazendas
5.
Exp Anim ; 72(1): 1-8, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36058846

RESUMO

The laboratory rat (Rattus norvegicus) is a key model organism for biomedical research. Rats can be subjected to strict genetic and environmental controls. The rat's large body size is suitable for both surgical operations and repeated measurements of physiological parameters. These advantages have led to the development of numerous rat models for genetic diseases. Forward genetics is a proven approach for identifying the causative genes of these disease models but requires genome resources including genetic markers and genome sequences. Over the last few decades, rat genome resources have been developed and deposited in bioresource centers, which have enabled us to perform positional cloning in rats. To date, more than 100 disease-related genes have been identified by positional cloning. Since some disease models are more accessible in rats than mice, the identification of causative genes in these models has sometimes led to the discovery of novel functions of genes. As before, various mutant rats are also expected to be discovered and developed as disease models in the future. Thus, the forward genetics continues to be an important approach to find genes involved in disease phenotypes in rats. In this review, I provide an overview the development of rat genome resources and describe examples of positional cloning in rats in which novel gene functions have been identified.


Assuntos
Genoma , Ratos , Camundongos , Animais , Fenótipo , Clonagem Molecular
6.
Exp Anim ; 72(1): 88-94, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36123037

RESUMO

Rodent coat color genes have been studied as a bioresource to understand developmental and cellular processes. The Downunder rat is a fancy variety with a marking on its belly that runs from the neck to the breech and appears to mirror the dorsal hooded marking. Here, we established a congenic strain carrying the Downunder (Du) gene in an F344 genetic background. In addition to the ventral marking, Du/+ rats exhibit anophthalmia or microphthalmia with incomplete penetrance. Du/Du embryos die in the early stages of organogenesis. Genetic linkage analysis mapped the Du gene to rat chromosome 3 and haplotype mapping with congenic rats localized the Du locus to a 3.9-Mb region. The Du locus includes two functional genes, glycosyltransferase-like domain-containing 1 (Gtdc1) and zinc finger E-box binding homeobox 2 (Zeb2). Although we found no functional variation within any of Zeb2's exons or intron-exon boundaries, Zeb2 mRNA levels were significantly lower in Du/+ rats compared with wild-type rats. It is known that melanocyte-specific Zeb2 deletion results in the congenital loss of hair pigmentation in mice. Taken together, our results indicate that the Du mutation exerts pleiotropic effects on hair pigmentation, eye morphology, and development. Moreover, the Zeb2 gene is a strong candidate for the Du mutation.


Assuntos
Cromossomos Humanos Par 3 , Pigmentação , Humanos , Ratos , Camundongos , Animais , Fenótipo , Ratos Endogâmicos F344 , Mutação , Pigmentação/genética , Glicosiltransferases/genética
7.
Anim Sci J ; 92(1): e13644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34626147

RESUMO

The aim of this study was to investigate beta-casein polymorphism among 320 Japanese cows sampled from eight dairy farms. We used a newly-developed genotyping method that involved collecting DNA from hairs and a Cycleave polymerase chain reaction (PCR) assay to detect the A1, A2, and B variants. Results revealed the presence of five genotypes (A1A1, A2A2, A1A2, A1B, and A2B). We found that the most common genotype was A2A2 (0.42), followed by A1A2 (0.39) and A1A1 (0.11). The A1B and A2B genotypes were less frequent (<0.05). The frequencies of alleles A1, A2, and B were calculated to be 0.32, 0.64, and 0.04, respectively. Our study is the first to show the current status of beta-casein polymorphisms in Japanese dairy farms. Given the adverse effects of A1 beta-casein on human health, attempts have been made to develop herds consisting solely of A2A2 cows. Our study provides a reference for improving cow populations in Japanese dairy farms. The Cycleave PCR-based assay we developed here can be used for rapid and reliable genotyping of bovine beta-casein.


Assuntos
Caseínas , Polimorfismo Genético , Alelos , Animais , Caseínas/genética , Bovinos/genética , Fazendas , Feminino , Genótipo , Japão , Leite , Polimorfismo Genético/genética
8.
Sci Rep ; 11(1): 2039, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479380

RESUMO

The RIß subunit of cAMP-dependent protein kinase (PKA), encoded by Prkar1b, is a neuronal isoform of the type I regulatory subunit of PKA. Mice lacking the RIß subunit exhibit normal long-term potentiation (LTP) in the Schaffer collateral pathway of the hippocampus and normal behavior in the open-field and fear conditioning tests. Here, we combined genetic, electrophysiological, and behavioral approaches to demonstrate that the RIß subunit was involved in body tremor, LTP in the Schaffer collateral pathway, and fear conditioning memory in rats. Genetic analysis of WTC-furue, a mutant strain with spontaneous tremors, revealed a deletion in the Prkar1b gene of the WTC-furue genome. Prkar1b-deficient rats created by the CRISPR/Cas9 system exhibited body tremor. Hippocampal slices from mutant rats showed deficient LTP in the Schaffer collateral-CA1 synapse. Mutant rats also exhibited decreased freezing time following contextual and cued fear conditioning, as well as increased exploratory behavior in the open field. These findings indicate the roles of the RIß subunit in tremor pathogenesis and contextual and cued fear memory, and suggest that the hippocampal and amygdala roles of this subunit differ between mice and rats and that rats are therefore beneficial for exploring RIß function.


Assuntos
Subunidade RIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Hipocampo/metabolismo , Transtornos da Memória/genética , Tremor/genética , Animais , Comportamento Animal/fisiologia , Sistemas CRISPR-Cas/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Modelos Animais de Doenças , Medo/fisiologia , Hipocampo/patologia , Humanos , Memória/fisiologia , Transtornos da Memória/fisiopatologia , Camundongos , Mutação/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Neurônios/patologia , Ratos , Tremor/fisiopatologia
9.
Exp Anim ; 70(1): 137-143, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33115988

RESUMO

Noda epileptic rat (NER) is a mutant model for epilepsy that exhibits spontaneous generalized tonic-clonic seizure. Epileptogenesis of NER remains to be elucidated; but it is detected an insertion of an endogenous retrovirus sequence in intron 2 of the PHD finger protein 24 (Phf24) gene, encoding Gαi-interacting protein (GINIP). Phf24 is a strong candidate gene for epileptogenesis in NER. PHF24 modulates GABAB signaling through interacting with Gαi protein. To clarify the epileptogenesis of NER, we investigated a distribution of PHF24-expressing cells in the central nerve system (CNS). While broad expression of PHF24 was observed in the CNS, characteristic expression was noted in the periglomerular layer of the olfactory bulb and the lamina II of the spinal cord in the control rats. These cells showed co-expression with calbindin or calretinin, inhibitory interneuron markers. In the olfactory bulb, 15.6% and 41.2% of PHF24-positive neurons co-expressed calbindin and calretinin, respectively. Immunoelectron microscopy revealed that PHF24 was located in the presynaptic terminals, synaptic membranes and cytoplasmic matrix of neuronal soma. Our data suggested PHF24 is expressed in the inhibitory interneurons and may play important roles in modulation of the GABAB signaling.


Assuntos
Expressão Gênica , Estudos de Associação Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Convulsões/genética , Convulsões/metabolismo , Animais , Calbindina 2/metabolismo , Calbindinas/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Bulbo Olfatório/metabolismo , Ratos Endogâmicos F344 , Transdução de Sinais/genética , Medula Espinal/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
Exp Anim ; 69(4): 388-394, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-32507787

RESUMO

We recently demonstrated that aspartoacylase (Aspa) and hyperpolarization-activated cyclic nucleotide-gated potassium channel 1 (Hcn1) genes were causative of essential tremor (ET) in rats. This finding was obtained using Aspaem34Kyo/Hcn1A354V double-mutant rats, but they were bred on a heterogeneous genetic background of two strains, F344 and WTC. Here, we developed an Aspaem34Kyo/Hcn1em1Kyo double-knockout rat strain with a homogenous F344 genetic background and studied the ability of glutamate receptor antagonists to suppress ET. The F344-Aspa/Hcn1 double-knockout rats exhibited spontaneous, intense body tremor equivalent to that in the double-mutant rats. N-acetyl-aspartate (NAA), a substrate of ASPA, showed accumulation in all brain regions and in the spinal cord. However, N-acetyl-aspartyl-glutamate (NAAG), which is derived from NAA and interacts with glutamatergic receptors, was decreased in the medulla oblongata of the double-knockout rats. The tremor was suppressed by 3-[(R)-2-carboxypiperazin-4-yl]-prop-2-enyl-1-phosphonic acid, an N-methyl-D-aspartate (NMDA) receptor antagonist, in F344-Aspa/Hcn1 double-knockout rats. The non-NMDA glutamate receptor antagonist NBQX weakly inhibited the tremor, while the metabotropic glutamate receptor antagonist LY341495 showed no effect. In addition, both NR2B subunit-specific (Ro 25-6981) and NR2C/NR2D subunit-specific (cis-piperidine dicarboxylic acid) NMDA receptor antagonists suppressed the tremor. These data indicated that the pathogenesis of tremor in Aspa/Hcn1 double-knockout rats involved ionotropic glutamate receptors, particularly NMDA receptors.


Assuntos
Amidoidrolases/genética , Tremor Essencial/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais de Potássio/genética , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Amidoidrolases/metabolismo , Animais , Encéfalo/metabolismo , Tremor Essencial/tratamento farmacológico , Técnicas de Inativação de Genes , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Terapia de Alvo Molecular , Fenóis/farmacologia , Fenóis/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Canais de Potássio/metabolismo , Quinoxalinas/farmacologia , Quinoxalinas/uso terapêutico , Ratos Endogâmicos F344 , Ratos Mutantes , Medula Espinal/metabolismo
11.
Exp Anim ; 69(1): 11-17, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31292305

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated potassium channel 1 (HCN1) contribute to spontaneous rhythmic activity in different tissues, including the heart and brain. Deficiency in HCN1 function is associated with sick sinus syndrome in mice and epilepsy in humans. We recently developed Hcn1-deficient rats and found that they exhibit absence epilepsy. While rearing Hcn1-deficient rats, we noticed loose muscle tension and abnormal gait. We therefore evaluated the muscle strength and motor functions of Hcn1-deficient rats. When subjected to the wire hang test, Hcn1-deficient rats fell down more easily than control F344 rats. Grip strength of Hcn1-deficient rats was significantly smaller than F344 rats. In the inclined plane test, they exhibited a smaller maximum angle. In the rotarod test, the latency to fall was shorter for Hcn1-deficient rats than F344 rats. In the footprint analysis, Hcn1-deficient rats exhibited smaller step length and wider step width than F344 rats. Instead of poor motor coordination ability and muscle weakness, Hcn1-deficient rats exhibited normal electromyograms, muscle histology, and deep tendon reflex. These findings suggest that HCN1 channels contribute to motor coordination and muscle strength, and that the muscle weakness of Hcn1-deficient rats results from the involvement not of the peripheral but of the central nervous system.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/deficiência , Força Muscular/genética , Debilidade Muscular/genética , Canais de Potássio/deficiência , Desempenho Psicomotor/fisiologia , Animais , Ratos
12.
J Inflamm Res ; 12: 293-299, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754309

RESUMO

PURPOSE: In rodents, dextran sulfate sodium (DSS)-induced diarrhea and colonic inflammation have similar symptoms to those of ulcerative colitis in humans. We examined the effects of exposure to mild hyperbaric oxygen (MHO) at an atmospheric pressure of 1317 hPa with 40% oxygen on DSS-induced diarrhea and colonic inflammation in rats. METHODS: Five-week-old male Kyoto Apc Delta (KAD) rats (n = 12) were administered 2% DSS through drinking water for 1 week. Subsequently, DSS-treated male rats were not subjected to any further treatment (n = 6) or exposed to MHO (n = 6) for 2 weeks. Age-matched KAD rats not subjected to DSS treatment or exposed to MHO were used as the control group (n = 6). RESULTS: Control rats did not exhibit diarrhea and colonic inflammation. However, DSS-treated rats exhibited diarrhea and colonic inflammation, regardless of exposure to MHO. Exposure to MHO for 2 weeks led to decreased incidence of diarrhea in DSS-treated rats (p < 0.05). Exposure to MHO had no effect on colonic inflammation in DSS-treated rats (p = 0.12). CONCLUSION: Exposure to MHO for 2 weeks can improve diarrhea but cannot attenuate colonic inflammation, possibly due to the short exposure duration (2 weeks) used in this study.

13.
Epilepsy Res ; 155: 106159, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31277035

RESUMO

BACKGROUND: VNS showed time-dependent anti-seizure effect. However, the precise mechanism of VNS in acute and chronic anti-seizure effect has not been fully elucidated. Noda epileptic rat (NER) is genetic epilepsy model rat which exhibits spontaneous generalized tonic-clonic seizure (GTC) approximately once per 30 h and frequent dialeptic seizure (DS). We performed acute and chronic VNS on NER to focus on the acute and chronic anti-epileptic effect and neuronal activity change by VNS. METHODS: We performed acute VNS (2 h) on 22 NERs (VNS, n = 11, control, n = 11), then subsequently administered chronic (4 weeks) VNS on 10 of 22 NERs (VNS n = 5, control n = 5). We evaluated the acute and chronic anti-seizure effects of VNS on GTC and DS by behavioral and electroencephalographical observation (2 h every week). We carried out double immunofluorescence for biomarkers of short-term (c-Fos) and long-term (ΔFosB) neuronal activation to map regions in the brain that were activated by acute (VNS n = 6, control n = 6) or chronic VNS (VNS n = 5, control n = 5). Furthermore, we performed chronic VNS (4 w) on 12 NERs (VNS n = 6, control n = 6) with long-term observation (8 h a day, 5d per week) to obtain an adequate number of GTCs to elucidate the time dependent anti-epileptic effect on GTC. RESULTS: Acute VNS treatment reduced GTC seizure frequency and total duration of the DS. Chronic VNS resulted in a time-dependent reduction of DS frequency and duration. However, chronic VNS did not show time-dependent reduction of GTC frequency. There were significant c-Fos expressions in the central medial nucleus (CM), mediodorsal thalamic nucleus (MDM), locus coeruleus (LC), and nucleus of solitary tract (NTS) after acute VNS. And there were significant ΔFosB expressions in the lateral septal nucleus (LSV), medial septal nucleus (MSV), MDM, and pontine reticular nucleus caudal (PnC) after chronic VNS. Any decrease in frequency of GTCs by chronic VNS could not be confirmed even with long-term observation. CONCLUSION: We confirmed acute VNS significantly reduced the frequency of GTC and duration of DS. Chronic VNS decreased the frequency and duration of DS in a time-dependent manner. The brainstem and midline thalamus were activated after acute and chronic VNS. The forebrain was activated only after chronic VNS.


Assuntos
Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Neurônios/fisiologia , Convulsões/fisiopatologia , Estimulação do Nervo Vago/métodos , Animais , Encéfalo/metabolismo , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/terapia , Masculino , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Convulsões/genética , Convulsões/metabolismo , Convulsões/terapia , Núcleo Solitário/metabolismo , Tálamo/metabolismo , Resultado do Tratamento
14.
Brain Res ; 1718: 169-175, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100216

RESUMO

OBJECTIVE: The dmy rat is an autosomal recessive mutant that exhibits severe rapid myelin breakdown throughout the central nervous system at 7-8 weeks of age. The dmy rat has a point mutation in Mrs2 gene, which encodes an essential component of the major electrophoretic Mg2+ influx system in the mitochondria. However, it remains unknown how mitochondrial dysfunction leads to the myelin breakdown. METHODS: We focused on the aspartoacylase (ASPA) and mitochondrion-related metabolites to clarify the mechanism of myelin pathology in dmy rats. Aspa mRNA was significantly decreased in both the gray matter and the ventral white matter of spinal cord in the dmy rats from 4 to 8 weeks of age. Very faint immunohistochemical expression for ASPA was noted in the gray and white matter of the affected dmy rats at 8 weeks. Liquid chromatography mass spectrometry revealed no different amount of N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A (CoA) in neurons, in the brain and spinal cord between the dmy and control rats. CONCLUSION: Our results indicated that the pyruvate dehydrogenase activity might be reduced due to the loss of Mg2+ transport activity in the mitochondria of the dmy rats, suggesting acetyl CoA production might be reduced. The number of oligodendrocytes was well preserved until 7 weeks. It is intriguing that prior to the myelin destruction at 7-8 weeks, disrupted expression of Aspa mRNA and ASPA protein undergoes from early stage of myelinogenesis. These data indicate that ASPA expression would be a useful index to evaluate a function of oligodendrocyte in the dmy rat.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas Mitocondriais/metabolismo , Bainha de Mielina/metabolismo , Amidoidrolases/genética , Animais , Encéfalo/metabolismo , Proteínas de Transporte de Cátions/genética , Sistema Nervoso Central/metabolismo , Progressão da Doença , Feminino , Canais Iônicos/metabolismo , Magnésio/metabolismo , Masculino , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Oligodendroglia/metabolismo , Ratos , Medula Espinal/metabolismo
15.
Behav Brain Res ; 369: 111922, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31039378

RESUMO

Phf24 is known as Gαi-interacting protein (GINIP) and is associated with the GABAB receptor. To study the function of Phf24 protein in the central nervous system (CNS), we have newly developed Phf24-null rats and investigated their behavioral phenotypes, especially changes in seizure sensitivity, emotional responses and cognitive functions. Phf24-null rats did not exhibit any spontaneous seizures. However, they showed a higher sensitivity to pentylenetetrazol (PTZ)- or pilocarpine-induced convulsive seizures. Phf24-null rats also showed an elevated susceptibility to kindling development with repeated PTZ treatments, suggesting that Phf24 acts as an inhibitory modulator in epileptogenesis. Although young Phf24-null rats showed normal gross behaviors, elevated spontaneous locomotor activity, especially in terms of the circadian dark period, emotional hyper-reactivity, reduced anxiety behaviors in the elevated plus-maze (EPM) test, and cognitive deficits in the Morris water maze test were explicitly observed at older age (20-week-old). The present results suggest that Phf24 is essential for proper functioning of the CNS, especially in preventing epileptogenesis and controlling emotional and cognitive functions.


Assuntos
Disfunção Cognitiva/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Convulsões/etiologia , Animais , Sistema Nervoso Central/metabolismo , Cognição/fisiologia , Transtornos Cognitivos/genética , Disfunção Cognitiva/metabolismo , Emoções/fisiologia , Técnicas de Inativação de Genes/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Excitação Neurológica/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Dedos de Zinco PHD/genética , Ratos , Ratos Endogâmicos F344 , Receptores de GABA-B/genética , Convulsões/genética , Convulsões/metabolismo
16.
Brain Res ; 1706: 209-217, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408474

RESUMO

Hyperpolarized-activated cyclic nucleotide-gated (HCN) channels underlie hyperpolarization-activated current (Ih) and are involved in controlling the excitability and electrical responsiveness of neurons. Absence epilepsy is clinically defined by a sudden, brief impairment of consciousness and behavioral arrest. Spike-and-wave discharges (SWDs) on electroencephalograms (EEG) are a diagnostic hallmark of absence epilepsy. In rat models of absence epilepsy, impaired function or expression of HCN1, a subtype of HCN channels, has been found. Here, to evaluate whether HCN1 deficiency causes absence epilepsy in rats, we developed Hcn1-knockout rats by transcription activator-like effector nuclease mutagenesis. The cortical and hippocampal pyramidal neurons of these rats displayed a significant reduction of Ih, a pronounced hyperpolarizing shift of the resting membrane potential, and increased input resistance, which indicated that the Hcn1-knockout rats were deficient in HCN1 function. The Hcn1-knockout rats were also more vulnerable to pentylenetetrazol-induced acute convulsions. More importantly, they exhibited spontaneous SWDs, which were accompanied by behavioral arrest, both of which were suppressed by ethosuximide. These results confirm the involvement of the HCN1 subunit in the regulation of input resistance and provide direct evidence that a deficiency of HCN1 caused absence epilepsy in rats.


Assuntos
Epilepsia Tipo Ausência/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Potássio/metabolismo , Potenciais de Ação/fisiologia , Animais , Córtex Cerebral/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Tipo Ausência/etiologia , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio/genética , Canais de Potássio/fisiologia , Células Piramidais/fisiologia , Ratos , Ratos Endogâmicos F344 , Convulsões/metabolismo
17.
Oncotarget ; 9(74): 33972-33981, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30338039

RESUMO

Chronic inflammation in the colorectum increases the risk of colorectal cancer development. Pentoxifylline, a medicine used for improving the circulation, has been reported to inhibit TNF-α production and to ameliorate inflammatory bowel disease and non-alcoholic steatohepatitis. In this study, we investigated the effects of pentoxifylline on inflammation-related colon tumorigenesis in a rodent model using Kyoto APC delta rats, which have APC mutation and are susceptible to colon carcinogenesis. Male Kyoto APC delta rats were treated with azoxymethane and dextran sodium sulfate, and were subsequently administered water, with or without pentoxifylline. At the end of the experiment, the development of colorectal tumor was significantly inhibited in the pentoxifylline group. The pentoxifylline treatment also lowered the levels of oxidative stress markers and mRNAs of pro-inflammatory cytokines, including TNF-α and IL-6, in the colon mucosa. The PCNA labeling index and the inflammation score were also decreased in the colon of rats in the pentoxifylline -treated group. We also used an endoscopy to observe the tumor progression and inflammation in the colon of rats, revealing that inflammation grade was significantly lower in pentoxifylline-treated group at several points during the experiment. These findings suggest that pentoxifylline treatment might be useful for chemoprevention of inflammation-related colon cancer.

18.
J Vet Med Sci ; 80(9): 1400-1406, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30012933

RESUMO

Polyomaviruses (PyVs) infect a wide range of animals and provoke wasting diseases, particularly in immunosuppressed hosts. Recently, a novel Rattus norvegicus polyomavirus 2 (RatPyV2) has been identified in a colony of X-linked severe combined immunodeficiency (X-SCID) rats in the United States. Here, we describe the first report of the RatPyV2 infection in an X-SCID rat colony in Japan. The affected rats exhibited adult-onset wasting. Histologically, we observed large basophilic intranuclear inclusion bodies within the hyperplastic or dysplastic epithelial cells in the salivary glands, Harderian glands, extraorbital lacrimal glands, and in respiratory and reproductive tissues. Among these organs, the parotid salivary, Harderian, and extraorbital lacrimal glands were most obviously affected. In particular, the parotid salivary glands were the most severely and diffusely affected and atrophic lesions were prominent even at 1 month of age, which suggested that the parotid salivary glands would be highly susceptible to RatPyV2 in X-SCID rats. RatPyV2 inclusion bodies were also detected in the tail of the epididymis and deferent duct. Such reproductive lesions developed significantly in the later stage of breeding age, and therefore may be associated with the reduced fecundity observed in the infected X-SCID rats. We also established a simple, rapid, and non-invasive diagnostic method based on the Amp-FTA method, using buccal swabs for the detection of RatPyV2 in immunodeficient rats. Our findings contribute to the early detection and diagnosis of RatPyV2 infections.


Assuntos
Infecções por Polyomavirus/veterinária , Polyomavirus/isolamento & purificação , Infecções Tumorais por Vírus/veterinária , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/veterinária , Animais , Feminino , Japão , Masculino , Infecções por Polyomavirus/diagnóstico , Infecções por Polyomavirus/epidemiologia , Infecções por Polyomavirus/virologia , Ratos , Ratos Endogâmicos F344 , Glândulas Salivares , Infecções Tumorais por Vírus/diagnóstico , Infecções Tumorais por Vírus/epidemiologia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/virologia
19.
Behav Genet ; 47(6): 609-619, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28936718

RESUMO

The Noda epileptic rat (NER) exhibits generalized tonic-clonic seizures (GTCS). A genetic linkage analysis identified two GTCS-associated loci, Ner1 on Chr 1 and Ner3 on Chr 5. The wild-type Ner1 and Ner3 alleles suppressed GTCS when combined in double-locus congenic lines, but not when present in single-locus congenic lines. Global expression analysis revealed that cholecystokinin B receptor (Cckbr) and suppressor of tumorigenicity 5 (St5), which map within Ner1, and PHD finger protein 24 (Phf24), which maps within Ner3, were significantly downregulated in NER. De novo BAC sequencing detected an insertion of an endogenous retrovirus sequence in intron 2 of the Phf24 gene in the NER genome, and PHF24 protein was almost absent in the NER brain. Phf24 encodes a Gαi-interacting protein involved in GABAB receptor signaling pathway. Based on these findings, we conclude that Cckbr, St5, and Phf24 are strong candidate genes for GTCS in NER.


Assuntos
Epilepsia Tônico-Clônica/genética , Receptor de Colecistocinina B/genética , Proteínas Supressoras de Tumor/genética , Animais , Cromossomos de Mamíferos/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Eletroencefalografia/métodos , Eletroencefalografia/veterinária , Epilepsia/genética , Ligação Genética/genética , Loci Gênicos/genética , Dedos de Zinco PHD/genética , Ratos , Ratos Wistar/genética , Receptor de Colecistocinina B/fisiologia , Convulsões/genética
20.
Brain Res ; 1676: 38-45, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917524

RESUMO

Tremor dominant Kyoto (Trdk) is an autosomal dominant mutation that appeared in F344/NSlc rats mutagenized with N-ethyl-N-nitrosourea (ENU). In this study, we characterized and genetically analyzed F344-Trdk/+ heterozygous rats. The rats exhibited a tremor that was especially evident around weaning but persisted throughout life. The tremors of F344-Trdk/+ rats were attenuated by drugs effective against essential tremor (ET) but not drugs used to treat Parkinson's disease-related tremor, indicating that the pharmacological phenotype of F344-Trdk/+ rats was similar to human ET. Using positional candidate approach, we identified the Trdk mutation as a missense substitution (c. 866T>A, p. I289N) in Kcnn2, which encodes the SK2 subunit of the small-conductance Ca2+-activated K+ channel. In vitro electrophysiological studies revealed that the I289N mutation diminished SK2 channel activity. These findings demonstrate that F344-Trdk/+ rats represent a novel model of ET, and strongly suggest that Kcnn2 is the causative gene for the tremor phenotype in F344-Trdk/+ rats.


Assuntos
Mutação de Sentido Incorreto , Ratos Endogâmicos F344 , Ratos Mutantes , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Tremor/genética , Animais , Antidiscinéticos/farmacologia , Encéfalo/metabolismo , Encéfalo/patologia , Mapeamento Cromossômico , Modelos Animais de Doenças , Tremor Essencial/tratamento farmacológico , Tremor Essencial/genética , Tremor Essencial/metabolismo , Tremor Essencial/patologia , Células HEK293 , Humanos , Imuno-Histoquímica , Hibridização In Situ , Técnicas de Patch-Clamp , Fenótipo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Transfecção , Tremor/tratamento farmacológico , Tremor/metabolismo , Tremor/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...