Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 239: 107631, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37271050

RESUMO

BACKGROUND AND OBJECTIVE: Histopathology is the gold standard for diagnosis of many cancers. Recent advances in computer vision, specifically deep learning, have facilitated the analysis of histopathology images for many tasks, including the detection of immune cells and microsatellite instability. However, it remains difficult to identify optimal models and training configurations for different histopathology classification tasks due to the abundance of available architectures and the lack of systematic evaluations. Our objective in this work is to present a software tool that addresses this need and enables robust, systematic evaluation of neural network models for patch classification in histology in a light-weight, easy-to-use package for both algorithm developers and biomedical researchers. METHODS: Here we present ChampKit (Comprehensive Histopathology Assessment of Model Predictions toolKit): an extensible, fully reproducible evaluation toolkit that is a one-stop-shop to train and evaluate deep neural networks for patch classification. ChampKit curates a broad range of public datasets. It enables training and evaluation of models supported by timm directly from the command line, without the need for users to write any code. External models are enabled through a straightforward API and minimal coding. As a result, Champkit facilitates the evaluation of existing and new models and deep learning architectures on pathology datasets, making it more accessible to the broader scientific community. To demonstrate the utility of ChampKit, we establish baseline performance for a subset of possible models that could be employed with ChampKit, focusing on several popular deep learning models, namely ResNet18, ResNet50, and R26-ViT, a hybrid vision transformer. In addition, we compare each model trained either from random weight initialization or with transfer learning from ImageNet pretrained models. For ResNet18, we also consider transfer learning from a self-supervised pretrained model. RESULTS: The main result of this paper is the ChampKit software. Using ChampKit, we were able to systemically evaluate multiple neural networks across six datasets. We observed mixed results when evaluating the benefits of pretraining versus random intialization, with no clear benefit except in the low data regime, where transfer learning was found to be beneficial. Surprisingly, we found that transfer learning from self-supervised weights rarely improved performance, which is counter to other areas of computer vision. CONCLUSIONS: Choosing the right model for a given digital pathology dataset is nontrivial. ChampKit provides a valuable tool to fill this gap by enabling the evaluation of hundreds of existing (or user-defined) deep learning models across a variety of pathology tasks. Source code and data for the tool are freely accessible at https://github.com/SBU-BMI/champkit.


Assuntos
Neoplasias , Redes Neurais de Computação , Humanos , Algoritmos , Software , Técnicas Histológicas
2.
Sci Data ; 7(1): 185, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561748

RESUMO

The distribution and appearance of nuclei are essential markers for the diagnosis and study of cancer. Despite the importance of nuclear morphology, there is a lack of large scale, accurate, publicly accessible nucleus segmentation data. To address this, we developed an analysis pipeline that segments nuclei in whole slide tissue images from multiple cancer types with a quality control process. We have generated nucleus segmentation results in 5,060 Whole Slide Tissue images from 10 cancer types in The Cancer Genome Atlas. One key component of our work is that we carried out a multi-level quality control process (WSI-level and image patch-level), to evaluate the quality of our segmentation results. The image patch-level quality control used manual segmentation ground truth data from 1,356 sampled image patches. The datasets we publish in this work consist of roughly 5 billion quality controlled nuclei from more than 5,060 TCGA WSIs from 10 different TCGA cancer types and 1,356 manually segmented TCGA image patches from the same 10 cancer types plus additional 4 cancer types.


Assuntos
Núcleo Celular/patologia , Técnicas Histológicas , Processamento de Imagem Assistida por Computador , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Amarelo de Eosina-(YS) , Hematoxilina , Humanos
3.
Pattern Recognit ; 86: 188-200, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30631215

RESUMO

We propose a sparse Convolutional Autoencoder (CAE) for simultaneous nucleus detection and feature extraction in histopathology tissue images. Our CAE detects and encodes nuclei in image patches in tissue images into sparse feature maps that encode both the location and appearance of nuclei. A primary contribution of our work is the development of an unsupervised detection network by using the characteristics of histopathology image patches. The pretrained nucleus detection and feature extraction modules in our CAE can be fine-tuned for supervised learning in an end-to-end fashion. We evaluate our method on four datasets and achieve state-of-the-art results. In addition, we are able to achieve comparable performance with only 5% of the fully- supervised annotation cost.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34025103

RESUMO

Detection, segmentation and classification of nuclei are fundamental analysis operations in digital pathology. Existing state-of-the-art approaches demand extensive amount of supervised training data from pathologists and may still perform poorly in images from unseen tissue types. We propose an unsupervised approach for histopathology image segmentation that synthesizes heterogeneous sets of training image patches, of every tissue type. Although our synthetic patches are not always of high quality, we harness the motley crew of generated samples through a generally applicable importance sampling method. This proposed approach, for the first time, re-weighs the training loss over synthetic data so that the ideal (unbiased) generalization loss over the true data distribution is minimized. This enables us to use a random polygon generator to synthesize approximate cellular structures (i.e., nuclear masks) for which no real examples are given in many tissue types, and hence, GAN-based methods are not suited. In addition, we propose a hybrid synthesis pipeline that utilizes textures in real histopathology patches and GAN models, to tackle heterogeneity in tissue textures. Compared with existing state-of-the-art supervised models, our approach generalizes significantly better on cancer types without training data. Even in cancer types with training data, our approach achieves the same performance without supervision cost. We release code and segmentation results on over 5000 Whole Slide Images (WSI) in The Cancer Genome Atlas (TCGA) repository, a dataset that would be orders of magnitude larger than what is available today.

5.
AMIA Jt Summits Transl Sci Proc ; 2017: 227-236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29888078

RESUMO

Segmentation of nuclei in whole slide tissue images is a common methodology in pathology image analysis. Most segmentation algorithms are sensitive to input algorithm parameters and the characteristics of input images (tissue morphology, staining, etc.). Because there can be large variability in the color, texture, and morphology of tissues within and across cancer types (heterogeneity can exist even within a tissue specimen), it is likely that a set of input parameters will not perform well across multiple images. It is, therefore, highly desired, and necessary in some cases, to carry out a quality control of segmentation results. This work investigates the application of machine learning in this process. We report on the application of active learning for segmentation quality assessment for pathology images and compare three classification methods, Support Vector Machine (SVM), Random Forest (RF) and Convolutional Neural Network (CNN), for their performance improvement and efficiency.

6.
J Pathol Inform ; 8: 38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966837

RESUMO

CONTEXT: Image segmentation pipelines often are sensitive to algorithm input parameters. Algorithm parameters optimized for a set of images do not necessarily produce good-quality-segmentation results for other images. Even within an image, some regions may not be well segmented due to a number of factors, including multiple pieces of tissue with distinct characteristics, differences in staining of the tissue, normal versus tumor regions, and tumor heterogeneity. Evaluation of quality of segmentation results is an important step in image analysis. It is very labor intensive to do quality assessment manually with large image datasets because a whole-slide tissue image may have hundreds of thousands of nuclei. Semi-automatic mechanisms are needed to assist researchers and application developers to detect image regions with bad segmentations efficiently. AIMS: Our goal is to develop and evaluate a machine-learning-based semi-automated workflow to assess quality of nucleus segmentation results in a large set of whole-slide tissue images. METHODS: We propose a quality control methodology, in which machine-learning algorithms are trained with image intensity and texture features to produce a classification model. This model is applied to image patches in a whole-slide tissue image to predict the quality of nucleus segmentation in each patch. The training step of our methodology involves the selection and labeling of regions by a pathologist in a set of images to create the training dataset. The image regions are partitioned into patches. A set of intensity and texture features is computed for each patch. A classifier is trained with the features and the labels assigned by the pathologist. At the end of this process, a classification model is generated. The classification step applies the classification model to unlabeled test images. Each test image is partitioned into patches. The classification model is applied to each patch to predict the patch's label. RESULTS: The proposed methodology has been evaluated by assessing the segmentation quality of a segmentation method applied to images from two cancer types in The Cancer Genome Atlas; WHO Grade II lower grade glioma (LGG) and lung adenocarcinoma (LUAD). The results show that our method performs well in predicting patches with good-quality segmentations and achieves F1 scores 84.7% for LGG and 75.43% for LUAD. CONCLUSIONS: As image scanning technologies advance, large volumes of whole-slide tissue images will be available for research and clinical use. Efficient approaches for the assessment of quality and robustness of output from computerized image analysis workflows will become increasingly critical to extracting useful quantitative information from tissue images. Our work demonstrates the feasibility of machine-learning-based semi-automated techniques to assist researchers and algorithm developers in this process.

7.
Bioinformatics ; 33(7): 1064-1072, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062445

RESUMO

Motivation: Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. Results: The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Conclusions: Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Availability and Implementation: Source code: https://github.com/SBU-BMI/region-templates/ . Contact: teodoro@unb.br. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos
8.
IEEE Winter Conf Appl Comput Vis ; 2017: 834-841, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29881826

RESUMO

Classifying the various shapes and attributes of a glioma cell nucleus is crucial for diagnosis and understanding of the disease. We investigate the automated classification of the nuclear shapes and visual attributes of glioma cells, using Convolutional Neural Networks (CNNs) on pathology images of automatically segmented nuclei. We propose three methods that improve the performance of a previously-developed semi-supervised CNN. First, we propose a method that allows the CNN to focus on the most important part of an image-the image's center containing the nucleus. Second, we inject (concatenate) pre-extracted VGG features into an intermediate layer of our Semi-Supervised CNN so that during training, the CNN can learn a set of additional features. Third, we separate the losses of the two groups of target classes (nuclear shapes and attributes) into a single-label loss and a multi-label loss in order to incorporate prior knowledge of inter-label exclusiveness. On a dataset of 2078 images, the combination of the proposed methods reduces the error rate of attribute and shape classification by 21.54% and 15.07% respectively compared to the existing state-of-the-art method on the same dataset.

9.
Proc Mach Learn Res ; 54: 430-439, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31106299

RESUMO

Within Neural Networks (NN), the parameters of Adaptive Activation Functions (AAF) control the shapes of activation functions. These parameters are trained along with other parameters in the NN. AAFs have improved performance of Convolutional Neural Networks (CNN) in multiple classification tasks. In this paper, we propose and apply AAFs on CNNs for regression tasks. We argue that applying AAFs in the regression (second-to-last) layer of a NN can significantly decrease the bias of the regression NN. However, using existing AAFs may lead to overfitting. To address this problem, we propose a Smooth Adaptive Activation Function (SAAF) with a piecewise polynomial form which can approximate any continuous function to arbitrary degree of error, while having a bounded Lipschitz constant for given bounded model parameters. As a result, NNs with SAAF can avoid overfitting by simply regularizing model parameters. We empirically evaluated CNNs with SAAFs and achieved state-of-the-art results on age and pose estimation datasets.

10.
Artigo em Inglês | MEDLINE | ID: mdl-27795661

RESUMO

Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images (WSI) is currently computationally impossible. The differentiation of cancer subtypes is based on cellular-level visual features observed on image patch scale. Therefore, we argue that in this situation, training a patch-level classifier on image patches will perform better than or similar to an image-level classifier. The challenge becomes how to intelligently combine patch-level classification results and model the fact that not all patches will be discriminative. We propose to train a decision fusion model to aggregate patch-level predictions given by patch-level CNNs, which to the best of our knowledge has not been shown before. Furthermore, we formulate a novel Expectation-Maximization (EM) based method that automatically locates discriminative patches robustly by utilizing the spatial relationships of patches. We apply our method to the classification of glioma and non-small-cell lung carcinoma cases into subtypes. The classification accuracy of our method is similar to the inter-observer agreement between pathologists. Although it is impossible to train CNNs on WSIs, we experimentally demonstrate using a comparable non-cancer dataset of smaller images that a patch-based CNN can outperform an image-based CNN.

11.
Proc IPDPS (Conf) ; 2013: 103-114, 2013 05.
Artigo em Inglês | MEDLINE | ID: mdl-25419546

RESUMO

Analysis of large pathology image datasets offers significant opportunities for the investigation of disease morphology, but the resource requirements of analysis pipelines limit the scale of such studies. Motivated by a brain cancer study, we propose and evaluate a parallel image analysis application pipeline for high throughput computation of large datasets of high resolution pathology tissue images on distributed CPU-GPU platforms. To achieve efficient execution on these hybrid systems, we have built runtime support that allows us to express the cancer image analysis application as a hierarchical data processing pipeline. The application is implemented as a coarse-grain pipeline of stages, where each stage may be further partitioned into another pipeline of fine-grain operations. The fine-grain operations are efficiently managed and scheduled for computation on CPUs and GPUs using performance aware scheduling techniques along with several optimizations, including architecture aware process placement, data locality conscious task assignment, data prefetching, and asynchronous data copy. These optimizations are employed to maximize the utilization of the aggregate computing power of CPUs and GPUs and minimize data copy overheads. Our experimental evaluation shows that the cooperative use of CPUs and GPUs achieves significant improvements on top of GPU-only versions (up to 1.6×) and that the execution of the application as a set of fine-grain operations provides more opportunities for runtime optimizations and attains better performance than coarser-grain, monolithic implementations used in other works. An implementation of the cancer image analysis pipeline using the runtime support was able to process an image dataset consisting of 36,848 4Kx4K-pixel image tiles (about 1.8TB uncompressed) in less than 4 minutes (150 tiles/second) on 100 nodes of a state-of-the-art hybrid cluster system.

12.
Proc IEEE Inst Electr Electron Eng ; 100(4): 991-1003, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25328166

RESUMO

Pathology is a medical subspecialty that practices the diagnosis of disease. Microscopic examination of tissue reveals information enabling the pathologist to render accurate diagnoses and to guide therapy. The basic process by which anatomic pathologists render diagnoses has remained relatively unchanged over the last century, yet advances in information technology now offer significant opportunities in image-based diagnostic and research applications. Pathology has lagged behind other healthcare practices such as radiology where digital adoption is widespread. As devices that generate whole slide images become more practical and affordable, practices will increasingly adopt this technology and eventually produce an explosion of data that will quickly eclipse the already vast quantities of radiology imaging data. These advances are accompanied by significant challenges for data management and storage, but they also introduce new opportunities to improve patient care by streamlining and standardizing diagnostic approaches and uncovering disease mechanisms. Computer-based image analysis is already available in commercial diagnostic systems, but further advances in image analysis algorithms are warranted in order to fully realize the benefits of digital pathology in medical discovery and patient care. In coming decades, pathology image analysis will extend beyond the streamlining of diagnostic workflows and minimizing interobserver variability and will begin to provide diagnostic assistance, identify therapeutic targets, and predict patient outcomes and therapeutic responses.

13.
Proc IPDPS (Conf) ; 2012: 1093-1104, 2012 05.
Artigo em Inglês | MEDLINE | ID: mdl-25419545

RESUMO

The past decade has witnessed a major paradigm shift in high performance computing with the introduction of accelerators as general purpose processors. These computing devices make available very high parallel computing power at low cost and power consumption, transforming current high performance platforms into heterogeneous CPU-GPU equipped systems. Although the theoretical performance achieved by these hybrid systems is impressive, taking practical advantage of this computing power remains a very challenging problem. Most applications are still deployed to either GPU or CPU, leaving the other resource under- or un-utilized. In this paper, we propose, implement, and evaluate a performance aware scheduling technique along with optimizations to make efficient collaborative use of CPUs and GPUs on a parallel system. In the context of feature computations in large scale image analysis applications, our evaluations show that intelligently co-scheduling CPUs and GPUs can significantly improve performance over GPU-only or multi-core CPU-only approaches.

14.
IEEE Trans Biomed Eng ; 58(12): 3469-74, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21947516

RESUMO

Multimodal, multiscale data synthesis is becoming increasingly critical for successful translational biomedical research. In this letter, we present a large-scale investigative initiative on glioblastoma, a high-grade brain tumor, with complementary data types using in silico approaches. We integrate and analyze data from The Cancer Genome Atlas Project on glioblastoma that includes novel nuclear phenotypic data derived from microscopic slides, genotypic signatures described by transcriptional class and genetic alterations, and clinical outcomes defined by response to therapy and patient survival. Our preliminary results demonstrate numerous clinically and biologically significant correlations across multiple data types, revealing the power of in silico multimodal data integration for cancer research.


Assuntos
Neoplasias Encefálicas/patologia , Biologia Computacional/métodos , Sistemas de Gerenciamento de Base de Dados , Glioblastoma/patologia , Atlas como Assunto , Neoplasias Encefálicas/genética , Análise por Conglomerados , Simulação por Computador , Bases de Dados Factuais , Perfilação da Expressão Gênica , Genótipo , Glioblastoma/genética , Humanos , Estimativa de Kaplan-Meier , Microscopia , Fenótipo
15.
IEEE Trans Biomed Eng ; 57(10): 2617-21, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20656651

RESUMO

The integration of imaging and genomic data is critical to forming a better understanding of disease. Large public datasets, such as The Cancer Genome Atlas, present a unique opportunity to integrate these complementary data types for in silico scientific research. In this letter, we focus on the aspect of pathology image analysis and illustrate the challenges associated with analyzing and integrating large-scale image datasets with molecular characterizations. We present an example study of diffuse glioma brain tumors, where the morphometric analysis of 81 million nuclei is integrated with clinically relevant transcriptomic and genomic characterizations of glioblastoma tumors. The preliminary results demonstrate the potential of combining morphometric and molecular characterizations for in silico research.


Assuntos
Biologia Computacional/métodos , Glioma/patologia , Processamento de Imagem Assistida por Computador/métodos , Núcleo Celular/patologia , Simulação por Computador , Bases de Dados Factuais , Humanos , Imuno-Histoquímica
16.
Proc IEEE Int Symp Biomed Imaging ; 6: 1306-1309, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19936299

RESUMO

Accurate segmentation of tissue microarrays is a challenging topic because of some of the similarities exhibited by normal tissue and tumor regions. Processing speed is another consideration when dealing with imaged tissue microarrays as each microscopic slide may contain hundreds of digitized tissue discs. In this paper, a fast and accurate image segmentation algorithm is presented. Both a whole disc delineation algorithm and a learning based tumor region segmentation approach which utilizes multiple scale texton histograms are introduced. The algorithm is completely automatic and computationally efficient. The mean pixel-wise segmentation accuracy is about 90%. It requires about 1 second for whole disc (1024×1024 pixels) segmentation and less than 5 seconds for segmenting tumor regions. In order to enable remote access to the algorithm and collaborative studies, an analytical service is implemented using the caGrid infrastructure. This service wraps the algorithm and provides interfaces for remote clients to submit images for analysis and retrieve analysis results.

17.
Radiographics ; 27(3): 889-97, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17495299

RESUMO

Grid computing-the use of a distributed network of electronic resources to cooperatively perform subsets of computationally intensive tasks-may help improve the speed and accuracy of radiologic image interpretation by enabling collaborative computer-based and human readings. GridCAD, a software application developed by using the National Cancer Institute Cancer Biomedical Informatics Grid architecture, implements the fundamental elements of grid computing and demonstrates the potential benefits of grid technology for medical imaging. It allows users to query local and remote image databases, view images, and simultaneously run multiple computer-assisted detection (CAD) algorithms on the images selected. The prototype CAD systems that are incorporated in the software application are designed for the detection of lung nodules on thoracic computed tomographic images. GridCAD displays the original full-resolution images with an overlay of nodule candidates detected by the CAD algorithms, by human observers, or by a combination of both types of readers. With an underlying framework that is computer platform independent and scalable to the task, the software application can support local and long-distance collaboration in both research and clinical practice through the efficient, secure, and reliable sharing of resources for image data mining, analysis, and archiving.


Assuntos
Biologia Computacional/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Internet , Sistemas de Informação em Radiologia , Software , Interface Usuário-Computador , Gráficos por Computador , Radiologia/métodos
18.
J Am Med Inform Assoc ; 12(3): 286-95, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15684129

RESUMO

Here the authors present a Grid-aware middleware system, called GridPACS, that enables management and analysis of images in a massive scale, leveraging distributed software components coupled with interconnected computation and storage platforms. The need for this infrastructure is driven by the increasing biomedical role played by complex datasets obtained through a variety of imaging modalities. The GridPACS architecture is designed to support a wide range of biomedical applications encountered in basic and clinical research, which make use of large collections of images. Imaging data yield a wealth of metabolic and anatomic information from macroscopic (e.g., radiology) to microscopic (e.g., digitized slides) scale. Whereas this information can significantly improve understanding of disease pathophysiology as well as the noninvasive diagnosis of disease in patients, the need to process, analyze, and store large amounts of image data presents a great challenge.


Assuntos
Diagnóstico por Imagem , Armazenamento e Recuperação da Informação/métodos , Sistemas de Informação em Radiologia , Software , Redes de Comunicação de Computadores , Bases de Dados como Assunto , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...