Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38683716

RESUMO

Mixed-precision Deep Neural Networks (DNNs) provide an efficient solution for hardware deployment, especially under resource constraints, while maintaining model accuracy. Identifying the ideal bit precision for each layer, however, remains a challenge given the vast array of models, datasets, and quantization schemes, leading to an expansive search space. Recent literature has addressed this challenge, resulting in several promising frameworks. This paper offers a comprehensive overview of the standard quantization classifications prevalent in existing studies. A detailed survey of current mixed-precision frameworks is provided, with an in-depth comparative analysis highlighting their respective merits and limitations. The paper concludes with insights into potential avenues for future research in this domain.

2.
Nat Commun ; 14(1): 7522, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980425

RESUMO

The human body exhibits complex, spatially distributed chemo-electro-mechanical processes that must be properly captured for emerging applications in virtual/augmented reality, precision health, activity monitoring, bionics, and more. A key factor in enabling such applications involves the seamless integration of multipurpose wearable sensors across the human body in different environments, spanning from indoor settings to outdoor landscapes. Here, we report a versatile epidermal body area network ecosystem that enables wireless power and data transmission to and from battery-free wearable sensors with continuous functionality from dry to underwater settings. This is achieved through an artificial near field propagation across the chain of biocompatible, magneto-inductive metamaterials in the form of stretchable waterborne skin patches-these are fully compatible with pre-existing consumer electronics. Our approach offers uninterrupted, self-powered communication for human status monitoring in harsh environments where traditional wireless solutions (such as Bluetooth, Wi-Fi or cellular) are unable to communicate reliably.


Assuntos
Ecossistema , Realidade Virtual , Humanos , Tecnologia sem Fio , Epiderme , Monitorização Fisiológica
3.
Sci Rep ; 13(1): 3912, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890156

RESUMO

Quantum computers have enabled solving problems beyond the current machines' capabilities. However, this requires handling noise arising from unwanted interactions in these systems. Several protocols have been proposed to address efficient and accurate quantum noise profiling and mitigation. In this work, we propose a novel protocol that efficiently estimates the average output of a noisy quantum device to be used for quantum noise mitigation. The multi-qubit system average behavior is approximated as a special form of a Pauli Channel where Clifford gates are used to estimate the average output for circuits of different depths. The characterized Pauli channel error rates, and state preparation and measurement errors are then used to construct the outputs for different depths thereby eliminating the need for large simulations and enabling efficient mitigation. We demonstrate the efficiency of the proposed protocol on four IBM Q 5-qubit quantum devices. Our method demonstrates improved accuracy with efficient noise characterization. We report up to 88% and 69% improvement for the proposed approach compared to the unmitigated, and pure measurement error mitigation approaches, respectively.

4.
Sci Rep ; 12(1): 14873, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050339

RESUMO

A rising number of authors are drawing evidence on the diagnostic capacity of specific volatile organic compounds (VOCs) resulting from some body fluids. While cancer incidence in society is on the rise, it becomes clear that the analysis of these VOCs can yield new strategies to mitigate advanced cancer incidence rates. This paper presents the methodology implemented to test whether a device consisting of an electronic nose inspired by a dog's olfactory system and olfactory neurons is significantly informative to detect breast cancer (BC). To test this device, 90 human urine samples were collected from control subjects and BC patients at a hospital. To test this system, an artificial intelligence-based classification algorithm was developed. The algorithm was firstly trained and tested with data resulting from gas chromatography-mass spectrometry (GC-MS) urine readings, leading to a classification rate of 92.31%, sensitivity of 100.00%, and specificity of 85.71% (N = 90). Secondly, the same algorithm was trained and tested with data obtained with our eNose prototype hardware, and class prediction was achieved with a classification rate of 75%, sensitivity of 100%, and specificity of 50%.


Assuntos
Neoplasias da Mama , Compostos Orgânicos Voláteis , Animais , Inteligência Artificial , Neoplasias da Mama/diagnóstico , Cães , Nariz Eletrônico , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Compostos Orgânicos Voláteis/análise
5.
Sensors (Basel) ; 20(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150911

RESUMO

In this paper, we propose and validate using the Intra-body communications channel as a biometric identity. Combining experimental measurements collected from five subjects and two multi-layer tissue mimicking materials' phantoms, different machine learning algorithms were used and compared to test and validate using the channel characteristics and features as a biometric identity for subject identification. An accuracy of 98.5% was achieved, together with a precision and recall of 0.984 and 0.984, respectively, when testing the models against subject identification over results collected from the total samples. Using a simple and portable setup, this work shows the feasibility, reliability, and accuracy of the proposed biometric identity, which allows for continuous identification and verification.


Assuntos
Identificação Biométrica/métodos , Aprendizado de Máquina , Manequins , Algoritmos , Humanos , Reprodutibilidade dos Testes , Tecnologia sem Fio
6.
Micromachines (Basel) ; 10(8)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370261

RESUMO

Current computation architectures rely on more processor-centric design principles. On the other hand, the inevitable increase in the amount of data that applications need forces researchers to design novel processor architectures that are more data-centric. By following this principle, this study proposes an area-efficient Fast Fourier Transform (FFT) processor through in-memory computing. The proposed architecture occupies the smallest footprint of around 0.1 mm 2 inside its class together with acceptable power efficiency. According to the results, the processor exhibits the highest area efficiency ( FFT / s / area ) among the existing FFT processors in the current literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA