Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902479

RESUMO

Several animal studies have described the potential effect of cannabidiol (CBD) in alleviating the symptoms of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic inflammatory disease of the urinary bladder. However, the effects of CBD, its mechanism of action, and modulation of downstream signaling pathways in urothelial cells, the main effector cells in IC/BPS, have not been fully elucidated yet. Here, we investigated the effect of CBD against inflammation and oxidative stress in an in vitro model of IC/BPS comprised of TNFα-stimulated human urothelial cells SV-HUC1. Our results show that CBD treatment of urothelial cells significantly decreased TNFα-upregulated mRNA and protein expression of IL1α, IL8, CXCL1, and CXCL10, as well as attenuated NFκB phosphorylation. In addition, CBD treatment also diminished TNFα-driven cellular reactive oxygen species generation (ROS), by increasing the expression of the redox-sensitive transcription factor Nrf2, the antioxidant enzymes superoxide dismutase 1 and 2, and hem oxygenase 1. CBD-mediated effects in urothelial cells may occur by the activation of the PPARγ receptor since inhibition of PPARγ resulted in significantly diminished anti-inflammatory and antioxidant effects of CBD. Our observations provide new insights into the therapeutic potential of CBD through modulation of PPARγ/Nrf2/NFκB signaling pathways, which could be further exploited in the treatment of IC/BPS.


Assuntos
Canabidiol , Cistite Intersticial , Humanos , Antioxidantes/farmacologia , Canabidiol/farmacologia , Inflamação , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , PPAR gama/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982831

RESUMO

Animal models are invaluable in the research of the pathophysiology of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic aseptic urinary bladder disease of unknown etiology that primarily affects women. Here, a mouse model of IC/BPS was induced with multiple low-dose cyclophosphamide (CYP) applications and thoroughly characterized by RNA sequencing, qPCR, Western blot, and immunolabeling to elucidate key inflammatory processes and sex-dependent differences in the bladder inflammatory response. CYP treatment resulted in the upregulation of inflammatory transcripts such as Ccl8, Eda2r, and Vegfd, which are predominantly involved in innate immunity pathways, recapitulating the crucial findings in the bladder transcriptome of IC/BPS patients. The JAK/STAT signaling pathway was analyzed in detail, and the JAK3/STAT3 interaction was found to be most activated in cells of the bladder urothelium and lamina propria. Sex-based data analysis revealed that cell proliferation was more pronounced in male bladders, while innate immunity and tissue remodeling processes were the most distinctive responses of female bladders to CYP treatment. These processes were also reflected in prominent histological changes in the bladder. The study provides an invaluable reference dataset for preclinical research on IC/BPS and an insight into the sex-specific mechanisms involved in the development of IC/BPS pathology, which may explain the more frequent occurrence of this disease in women.


Assuntos
Cistite Intersticial , Camundongos , Animais , Feminino , Masculino , Cistite Intersticial/genética , Cistite Intersticial/patologia , Bexiga Urinária/patologia , Transcriptoma , Pelve/patologia , Proliferação de Células , Modelos Animais de Doenças , Receptor Xedar/metabolismo
3.
Front Immunol ; 13: 960667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045687

RESUMO

Urothelial cells of the urinary bladder play a critical role in the development and progression of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic and debilitating inflammatory disease. Given the lack of data on the exact phenotype and function of urothelial cells in an inflammatory setting (as in IC/BPS), we performed the first in-depth characterization of these cells using RNA sequencing, qPCR, ELISA, Western blot, and immunofluorescence. After TNFα stimulation, urothelial cells in the in vitro model of IC/BPS showed marked upregulation of several proinflammatory mediators, such as SAA, C3, IFNGR1, IL1α, IL1ß, IL8, IL23A, IL32, CXCL1, CXCL5, CXCL10, CXCL11, TNFAIPR, TNFRSF1B, and BIRC3, involved in processes and pathways of innate immunity, including granulocyte migration and chemotaxis, inflammatory response, and complement activation, as well as TLR-, NOD-like receptor- and NFkB-signaling pathways, suggesting their active role in shaping the local immune response of the bladder. Our study demonstrates that the TNFα-stimulated urothelial cells recapitulate key observations found in the bladders of patients with IC/BPS, underpinning their utility as a suitable in vitro model for understanding IC/BPS mechanisms and confirming the role of TNFα signaling as an important component of the associated pathology. The present study also identifies novel upregulated gene targets of TNFα in urothelial cells, including genes encoding the acute phase protein SAA, complement component C3, and the cytokine receptor IFNGR1, which could be exploited as therapeutic targets of IC/BPS. Altogether, our study provides a reference database of the phenotype of urothelial cells in an inflammatory environment that will not only increase our knowledge of their role in IC/BPS, but also advance our understanding of how urothelial cells shape tissue immunity in the bladder.


Assuntos
Cistite Intersticial , Cistite Intersticial/tratamento farmacológico , Cistite Intersticial/genética , Cistite Intersticial/patologia , Perfilação da Expressão Gênica , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Bexiga Urinária
4.
Diagnostics (Basel) ; 12(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35626233

RESUMO

Pathophysiology of interstitial cystitis/bladder pain syndrome (IC/BPS) remains poorly understood, as well as its effective diagnosis and therapy. Studying changes in tissue glycosylation patterns under pathological conditions is a promising way of discovering novel biomarkers and therapeutic targets. The glycobiology of IC/BPS is largely understudied, therefore we compared glycosylation patterns of normal human urothelium with the urothelium of IC/BPS patients using a selection of 10 plant-based lectins with different monosaccharide preferences. We also compared lectin binding to human urothelium with the two most cited experimental models of IC/BPS, specifically, TNFα-treated human urothelial cell line RT4 and cyclophosphamide-induced chronic cystitis in C57BL6/J mice. Furthermore, binding of four of the selected lectins (ConA, DSL, Jacalin and WGA) was evaluated qualitatively by means of fluorescence microscopy, and quantitatively by fluorescence intensity (F.I.) measurements. Our results reveal a significant reduction in F.I. of Jacalin, as well as a prominent change in the WGA labeling pattern in the urothelium of IC/BPS patients, suggesting their potential use as promising additional biomarkers for histopathological diagnosis of IC/BPS. We have also shown that urothelial glycosylation patterns between selected experimental models and patients with IC/BPS are similar enough to offer an adequate platform for preclinical study of IC/BPS glycobiology.

5.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216350

RESUMO

Monocytes are known to be implicated in the pathogenesis of systemic sclerosis (SSc), as they exert prominent migratory, adhesive, and chemotactic properties. The aim of our study was to characterize the surface expression of adhesion/chemotactic molecules (CD62L, CD11b, CCR2, CCR5) on the SSc monocytes and determine correlations with the clinical presentation of SSc. We included 38 SSc patients and 36 healthy age-and sex-matched controls. Isolated monocytes, as well as in vitro serum-treated monocytes, were analyzed by flow cytometry; additionally, soluble CD62L was measured in serum. We found increased soluble CD62L in the SSc serum samples and increased CD62L on the surface of the SSc monocytes in the in the same set of patients. Among samples with determined SSc-specific autoantibodies, the surface CD62L was the lowest in patients positive for anti-PM/Scl autoantibodies and the highest in patients with anti-topoisomerase I autoantibodies (ATA). The treatment of isolated healthy monocytes with ATA-positive SSc serum resulted in increased surface CD62L expression. Moreover, surface CCR5 was reduced on the monocytes from SSc patients with interstitial lung disease but also, along with CCR2, negatively correlated with the use of analgesics/anti-inflammatory drugs and immunosuppressants. In conclusion, increased CD62L on SSc monocytes, particularly in ATA-positive patients, provides new insights into the pathogenesis of SSc and suggests CD62L as a potential therapeutic target.


Assuntos
Autoanticorpos/metabolismo , Selectina L/metabolismo , Monócitos/metabolismo , Escleroderma Sistêmico/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Doenças Pulmonares Intersticiais/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores CCR2/metabolismo
6.
RMD Open ; 8(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987094

RESUMO

OBJECTIVES: To integrate published single-cell RNA sequencing (scRNA-seq) data and assess the contribution of synovial fibroblast (SF) subsets to synovial pathotypes and respective clinical characteristics in treatment-naïve early arthritis. METHODS: In this in silico study, we integrated scRNA-seq data from published studies with additional unpublished in-house data. Standard Seurat, Harmony and Liger workflow was performed for integration and differential gene expression analysis. We estimated single cell type proportions in bulk RNA-seq data (deconvolution) from synovial tissue from 87 treatment-naïve early arthritis patients in the Pathobiology of Early Arthritis Cohort using MuSiC. SF proportions across synovial pathotypes (fibroid, lymphoid and myeloid) and relationship of disease activity measurements across different synovial pathotypes were assessed. RESULTS: We identified four SF clusters with respective marker genes: PRG4+ SF (CD55, MMP3, PRG4, THY1neg ); CXCL12+ SF (CXCL12, CCL2, ADAMTS1, THY1low ); POSTN+ SF (POSTN, collagen genes, THY1); CXCL14+ SF (CXCL14, C3, CD34, ASPN, THY1) that correspond to lining (PRG4+ SF) and sublining (CXCL12+ SF, POSTN+ + and CXCL14+ SF) SF subsets. CXCL12+ SF and POSTN+ + were most prominent in the fibroid while PRG4+ SF appeared highest in the myeloid pathotype. Corresponding, lining assessed by histology (assessed by Krenn-Score) was thicker in the myeloid, but also in the lymphoid pathotype + the fibroid pathotype. PRG4+ SF correlated positively with disease severity parameters in the fibroid, POSTN+ SF in the lymphoid pathotype whereas CXCL14+ SF showed negative association with disease severity in all pathotypes. CONCLUSION: This study shows a so far unexplored association between distinct synovial pathologies and SF subtypes defined by scRNA-seq. The knowledge of the diverse interplay of SF with immune cells will advance opportunities for tailored targeted treatments.


Assuntos
Artrite Reumatoide , Membrana Sinovial , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Membrana Sinovial/metabolismo
7.
Genome Biol ; 22(1): 247, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433485

RESUMO

BACKGROUND: Genome-wide association studies have reported more than 100 risk loci for rheumatoid arthritis (RA). These loci are shown to be enriched in immune cell-specific enhancers, but the analysis so far has excluded stromal cells, such as synovial fibroblasts (FLS), despite their crucial involvement in the pathogenesis of RA. Here we integrate DNA architecture, 3D chromatin interactions, DNA accessibility, and gene expression in FLS, B cells, and T cells with genetic fine mapping of RA loci. RESULTS: We identify putative causal variants, enhancers, genes, and cell types for 30-60% of RA loci and demonstrate that FLS account for up to 24% of RA heritability. TNF stimulation of FLS alters the organization of topologically associating domains, chromatin state, and the expression of putative causal genes such as TNFAIP3 and IFNAR1. Several putative causal genes constitute RA-relevant functional networks in FLS with roles in cellular proliferation and activation. Finally, we demonstrate that risk variants can have joint-specific effects on target gene expression in RA FLS, which may contribute to the development of the characteristic pattern of joint involvement in RA. CONCLUSION: Overall, our research provides the first direct evidence for a causal role of FLS in the genetic susceptibility for RA accounting for up to a quarter of RA heritability.


Assuntos
Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Fibroblastos/patologia , Genômica , Padrões de Herança/genética , Membrana Sinovial/patologia , Adulto , Sequência de Bases , Cromatina/metabolismo , Bases de Dados Genéticas , Elementos Facilitadores Genéticos/genética , Epigênese Genética/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Predisposição Genética para Doença , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Probabilidade , Receptor de Interferon alfa e beta/metabolismo , Receptores de Interferon/metabolismo , Reprodutibilidade dos Testes , Fatores de Risco , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adulto Jovem
8.
Biomedicines ; 9(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440069

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a multifactorial, chronic bladder disorder with limited therapeutic options currently available. The present review provides an extensive overview of therapeutic approaches used in in vitro, ex vivo, and in vivo experimental models of IC/BPS. Publications were identified by electronic search of three online databases. Data were extracted for study design, type of treatment, main findings, and outcome, as well as for methodological quality and the reporting of measures to avoid bias. A total of 100 full-text articles were included. The majority of identified articles evaluated therapeutic agents currently recommended to treat IC/BPS by the American Urological Association guidelines (21%) and therapeutic agents currently approved to treat other diseases (11%). More recently published articles assessed therapeutic approaches using stem cells (11%) and plant-derived agents (10%), while novel potential drug targets identified were proteinase-activated (6%) and purinergic (4%) receptors, transient receptor potential channels (3%), microRNAs (2%), and activation of the cannabinoid system (7%). Our results show that the reported methodological quality of animal studies could be substantially improved, and measures to avoid bias should be more consistently reported in order to increase the value of preclinical research in IC/BPS for potential translation to a clinical setting.

9.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204585

RESUMO

In this study, we explored expression of microRNA (miR), miR-target genes and matrix remodelling molecules in temporal artery biopsies (TABs) from treatment-naïve patients with giant cell arteritis (GCA, n = 41) and integrated these analyses with clinical, laboratory, ultrasound and histological manifestations of GCA. NonGCA patients (n = 4) served as controls. GCA TABs exhibited deregulated expression of several miRs (miR-21-5p, -145-5p, -146a-5p, -146b-5p, -155-5p, 424-3p, -424-5p, -503-5p), putative miR-target genes (YAP1, PELI1, FGF2, VEGFA, KLF4) and matrix remodelling factors (MMP2, MMP9, TIMP1, TIPM2) with key roles in Toll-like receptor signaling, mechanotransduction and extracellular matrix biology. MiR-424-3p, -503-5p, KLF4, PELI1 and YAP1 were identified as new deregulated molecular factors in GCA TABs. Quantities of miR-146a-5p, YAP1, PELI1, FGF2, TIMP2 and MMP9 were particularly high in histologically positive GCA TABs with occluded temporal artery lumen. MiR-424-5p expression in TABs and the presence of facial or carotid arteritis on ultrasound were associated with vision disturbances in GCA patients. Correlative analysis of miR-mRNA quantities demonstrated a highly interrelated expression network of deregulated miRs and mRNAs in temporal arteries and identified KLF4 as a candidate target gene of deregulated miR-21-5p, -146a-5p and -155-5p network in GCA TABs. Meanwhile, arterial miR and mRNA expression did not correlate with constitutive symptoms and signs of GCA, elevated markers of systemic inflammation nor sonographic characteristics of GCA. Our study provides new insights into GCA pathophysiology and uncovers new candidate biomarkers of vision impairment in GCA.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Arterite de Células Gigantes/etiologia , Arterite de Células Gigantes/metabolismo , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , Artérias Temporais/metabolismo , Biomarcadores , Biópsia , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Arterite de Células Gigantes/diagnóstico , Humanos , Imuno-Histoquímica , Fator 4 Semelhante a Kruppel , Avaliação de Sintomas , Artérias Temporais/patologia , Ultrassonografia
10.
Front Med (Lausanne) ; 8: 822804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118101

RESUMO

Single cell RNA sequencing (scRNA-seq) represents a new large scale and high throughput technique allowing analysis of the whole transcriptome at the resolution of an individual cell. It has emerged as an imperative method in life science research, uncovering complex cellular networks and providing indices that will eventually lead to the development of more targeted and personalized therapies. The importance of scRNA-seq has been particularly highlighted through the analysis of complex biological systems, in which cellular heterogeneity is a key aspect, such as the immune system. Autoimmune inflammatory rheumatic diseases represent a group of disorders, associated with a dysregulated immune system and high patient heterogeneity in both pathophysiological and clinical aspects. This complicates the complete understanding of underlying pathological mechanisms, associated with limited therapeutic options available and their long-term inefficiency and even toxicity. There is an unmet need to investigate, in depth, the cellular and molecular mechanisms driving the pathogenesis of rheumatic diseases and drug resistance, identify novel therapeutic targets, as well as make a step forward in using stratified and informed therapeutic decisions, which could now be achieved with the use of single cell approaches. This review summarizes the current use of scRNA-seq in studying different rheumatic diseases, based on recent findings from published in vitro, in vivo, and clinical studies, as well as discusses the potential implementation of scRNA-seq in the development of precision medicine in rheumatology.

11.
Front Med (Lausanne) ; 8: 827095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127774

RESUMO

In the present study, we longitudinally monitored leukocyte subsets, expression of neutrophil surface adhesion molecules (CD62L and CD11b) and serum analytes in therapy-naïve patients with active giant cell arteritis (GCA). We collected blood samples at the baseline, and at weeks 1, 4, 12, 24, and 48 of follow-up, and evaluated short- and long-term effects of glucocorticoids (GC) vs. GC and leflunomide. Our aim was to identify candidate biomarkers that could be used to monitor disease activity and predict an increased risk of a relapse. Following high doses of GC, the numbers of CD4+ T-lymphocytes and B-lymphocytes transiently increased and then subsided when GC dose tapering started at week 4. In contrast, the numbers of neutrophils significantly increased during the follow-up time of 12 weeks compared to pre-treatment time. Neutrophil CD62L rapidly diminished after initiation of GC therapy, however its expression remained low at week 48, only in patients under combinatorial therapy with leflunomide. Levels of acute phase reactant SAA and IL-6 decreased significantly after treatment with GC and leflunomide, while levels of IL-8, IL-18, and CHI3L1 did not change significantly during the follow-up period. CHI3L1 was associated with signs of transmural inflammation and vessel occlusion and might therefore serve as a marker of fully developed active GCA, and a promising therapeutic target. Patients with relapses had higher levels of IL-23 at presentation than patients without relapses (p = 0.021). Additionally, the levels of IL-23 were higher at the time of relapse compared to the last follow-up point before relapse. IL-23 might present a promising biomarker of uncontrolled and active disease and could give early indication of upcoming relapses.

12.
Front Cardiovasc Med ; 6: 56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157238

RESUMO

Olive leaf extract (OLE) is used in traditional medicine as a food supplement and as an over-the-counter drug for a variety of its effects, including anti-inflammatory and anti-atherosclerotic ones. Mechanisms through which OLE could modulate these pathways in human vasculature remain largely unknown. Serum amyloid A (SAA) plays a causal role in atherosclerosis and cardiovascular diseases and induces pro-inflammatory and pro-adhesive responses in human coronary artery endothelial cells (HCAEC). Within this study we explored whether OLE can attenuate SAA-driven responses in HCAEC. HCAEC were treated with SAA (1,000 nM) and/or OLE (0.5 and 1 mg/ml). The expression of adhesion molecules VCAM-1 and E-selectin, matrix metalloproteinases (MMP2 and MMP9) and microRNA 146a, let-7e, and let-7g (involved in the regulation of inflammation) was determined by qPCR. The amount of secreted IL-6, IL-8, MIF, and GRO-α in cell culture supernatants was quantified by ELISA. Phosphorylation of NF-κB was assessed by Western blot and DNA damage was measured using the COMET assay. OLE decreased significantly released protein levels of IL-6 and IL-8, as well as mRNA expression of E-selectin in SAA-stimulated HCAEC and reduced MMP2 levels in unstimulated cells. Phosphorylation of NF-κB (p65) was upregulated in the presence of SAA, with OLE significantly attenuating this SAA-induced effect. OLE stabilized SAA-induced upregulation of microRNA-146a and let-7e in HCAEC, suggesting that OLE could fine-tune the SAA-driven activity of NF-κB by changing the microRNA networks in HCAEC. SAA induced DNA damage and worsened the oxidative DNA damage in HCAEC, whereas OLE protected HCAEC from SAA- and H2O2-driven DNA damage. OLE significantly attenuated certain pro-inflammatory and pro-adhesive responses and decreased DNA damage in HCAEC upon stimulation with SAA. The reversal of SAA-driven endothelial activation by OLE might contribute to its anti-inflammatory and anti-atherogenic effects in HCAEC.

13.
Inflammation ; 42(4): 1413-1425, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31011929

RESUMO

Serum amyloid A (SAA) is an acute-phase protein with important, pathogenic role in the development of atherosclerosis. Since dysfunctional endothelium represents a key early step in atherogenesis, we aimed to determine whether induced human coronary artery endothelial cells (HCAEC) modulate SAA1/2/4 expression and influence intracellular location and intercellular transport of SAA1. HCAEC were stimulated with 1 ng/ml IL-1ß, 10 ng/ml IL-6, and/or 1 µM dexamethasone for 24 h. QPCR, Western blots, ELISA, and immunofluorescent labeling were performed for detection of SAA1/2/4 mRNA and protein levels, respectively. In SAA1 transport experiments, FITC- or Cy3-labeled SAA1 were added to HCAEC separately, for 24 h, followed by a combined incubation of SAA1-FITC and SAA1-Cy3 positive cells, with IL-1ß and analysis by flow cytometry. IL-1ß upregulated SAA1 (119.9-fold, p < 0.01) and SAA2 (9.3-fold; p < 0.05) mRNA expression levels, while mRNA expression of SAA4 was not affected. Intracellular SAA1 was found mainly as a monomer, while SAA2 and SAA4 formed octamers as analyzed by Western blots. Within HCAEC, SAA1/2/4 located mostly to the perinuclear area and tunneling membrane nanotubes. Co-culturing of SAA1-FITC and SAA1-Cy3 positive cells for 48 h showed a significantly higher percentage of double positive cells in IL-1ß-stimulated (mean ± SD; 60 ± 4%) vs. non-stimulated cells (48 ± 2%; p < 0.05). IL-1ß induces SAA1 expression in HCAEC and promotes its intercellular exchange, suggesting that direct communication between cells in inflammatory conditions could ultimately lead to faster development of atherosclerosis in coronary arteries.


Assuntos
Vasos Coronários/citologia , Células Endoteliais/metabolismo , Interleucina-1beta/farmacologia , Proteína Amiloide A Sérica/metabolismo , Transporte Biológico , Células Cultivadas , Doença da Artéria Coronariana/etiologia , Humanos
14.
Clin Rheumatol ; 38(2): 307-316, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30069799

RESUMO

Giant cell arteritis (GCA) is a systemic vasculitis in individuals older than 50 years, characterized by headaches, visual disturbances, painful scalp, jaw claudication, impairment of limb arteries, and systemic inflammation, among other symptoms. GCA diagnosis is confirmed by a positive temporal artery biopsy (TAB) or by imaging modalities. A prominent acute phase response with inflammation is the hallmark of the disease, predominantly targeting large- and medium-sized arteries leading to stenosis or occlusion of arterial lumen. To date, there are no reliable tissue markers specific for GCA. Scarce reports have indicated the importance of epigenetics in GCA. The current systematic review reports significantly changed candidate biomarkers in TABs of GCA patients compared to non-GCA patients using qPCR.


Assuntos
Expressão Gênica , Arterite de Células Gigantes/diagnóstico , Arterite de Células Gigantes/genética , MicroRNAs/genética , Artérias Temporais/patologia , Biomarcadores , Citocinas/metabolismo , Metilação de DNA , Epigênese Genética , Arterite de Células Gigantes/fisiopatologia , Humanos
15.
Clin Rheumatol ; 38(2): 317-329, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30143961

RESUMO

Early diagnosis and treatment of giant cell arteritis (GCA) is crucial for preventing ischemic complications. Multiple serological markers have been identified; however, there is a distinct lack of predicting markers for GCA relapse and complications. Our main objective was to identify serological parameters in a large cohort of treatment-naïve GCA patients, which could support clinicians in evaluating the course of the disease. Clinical data was gathered, along with analyte detection using Luminex technology, ELISA, and nephelometry, among others. Unsupervised hierarchical clustering and principal component analysis of analyte profiles were performed to determine delineation of GCA patients and healthy blood donors (HBDs). Highest, significantly elevated analytes in GCA patients were SAA (83-fold > HBDs median values), IL-23 (58-fold), and IL-6 (11-fold). Importantly, we show for the first time significantly changed levels of MARCO, alpha-fetoprotein, protein C, resistin, TNC, TNF RI, M-CSF, IL-18, and IL-31 in GCA versus HBDs. Changes in levels of SAA, CRP, haptoglobin, ESR, MMP-1 and MMP-2, and TNF-alpha were found associated with relapse and visual disturbances. aCL IgG was associated with limb artery involvement, even following adjustment for multiple testing. Principal component analysis revealed clear delineation between HBDs and GCA patients. Our study reveals biomarker clusters in a large cohort of patients with GCA and emphasizes the importance of using groups of serological biomarkers, such as acute phase proteins, MMPs, and cytokines (e.g. TNF-alpha) that could provide crucial insight into GCA complications and progression, leading to a more personalized disease management.


Assuntos
Biomarcadores/sangue , Arterite de Células Gigantes/sangue , Idoso , Análise por Conglomerados , Estudos de Coortes , Diagnóstico Precoce , Feminino , Arterite de Células Gigantes/diagnóstico , Humanos , Modelos Logísticos , Masculino , Prognóstico , Recidiva
16.
PLoS One ; 13(4): e0195346, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617422

RESUMO

Serum amyloid A (SAA) is a sensitive inflammatory marker rapidly increased in response to infection, injury or trauma during the acute phase. Resolution of the acute phase and SAA reduction are well documented, however the exact mechanism remains elusive. Two inducible SAA proteins, SAA1 and SAA2, with their variants could contribute to systemic inflammation. While unconjugated human variant SAA1α is already commercially available, the variants of SAA2 are not. Antibodies against SAA have been identified in apparently healthy blood donors (HBDs) in smaller, preliminary studies. So, our objective was to detect anti-SAA and anti-SAA1α autoantibodies in the sera of 300 HBDs using ELISA, characterize their specificity and avidity. Additionally, we aimed to determine the presence of anti-SAA and anti-SAA1α autoantibodies in intravenous immunoglobulin (IVIg) preparations and examine their effects on released IL-6 from SAA/SAA1α-treated peripheral blood mononuclear cells (PBMCs). Autoantibodies against SAA and SAA1α had a median (IQR) absorbance OD (A450) of 0.655 (0.262-1.293) and 0.493 (0.284-0.713), respectively. Both anti-SAA and anti-SAA1α exhibited heterogeneous to high avidity and reached peak levels between 41-50 years, then diminished with age in the oldest group (51-67 years). Women consistently exhibited significantly higher levels than men. Good positive correlation was observed between anti-SAA and anti-SAA1α. Both anti-SAA and anti-SAA1α were detected in IVIg, their fractions subsequently isolated, and shown to decrease IL-6 protein levels released from SAA/SAA1α-treated PBMCs. In conclusion, naturally occurring antibodies against SAA and anti-SAA1α could play a physiological role in down-regulating their antigen and proinflammatory cytokines leading to the resolution of the acute phase and could be an important therapeutic option in patients with chronic inflammatory diseases.


Assuntos
Autoanticorpos/sangue , Interleucina-6/metabolismo , Leucócitos Mononucleares/imunologia , Proteína Amiloide A Sérica/imunologia , Adolescente , Adulto , Idoso , Envelhecimento/sangue , Envelhecimento/imunologia , Células Cultivadas , Humanos , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...