Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(24): 5888-5894, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38853530

RESUMO

The changes in the atomic structure and in the network of bonds between oxide tetrahedra in 60S bioactive glass upon modification of its structure by yttrium and lanthanum atoms were investigated via XPS, FTIR, and NMR spectroscopy methods. The presence of nanostructure in the samples of 60S bioactive glass modified with yttrium and lanthanum was demonstrated. The formation of a bioinert core of 60S bioactive glass nanoparticles with the subsequent formation of a biocompatible layer is facilitated by the redistribution of electron density when oxygen bridge bonds are broken, PO4 and SiO4 tetrahedra are fragmented in the polymer matrix, and isolated nanoclusters are formed. Given the fact that during the interaction with the extracellular matrix, the breakdown of covalent bonds -O-Si-O-P- is more energetically costly than the rapid ionic exchange of network modifiers Ca2+ (Y3+, La3+) and the leaching of isolated nanoclusters into the surrounding physiological environment, it is argued that modification of 60S bioactive glass with yttrium or lanthanum can accelerate bioactive ionic processes in the extracellular matrix.

2.
Biomed Res Int ; 2018: 4864952, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515401

RESUMO

This study examined potential exercise-induced changes in sclerostin and in bone turnover markers in young women following two modes of high intensity interval exercise that involve impact (running) or no-impact (cycling). Healthy, recreationally active, females (n=20; 22.5±2.7 years) performed two exercise trials in random order: high intensity interval running (HIIR) on a treadmill and high intensity interval cycling (HIIC) on a cycle ergometer. Trials consisted of eight 1 min running or cycling intervals at ≥90% of maximal heart rate, separated by 1 min passive recovery intervals. Blood samples were collected at rest (pre-exercise) and 5 min, 1h, 24h, and 48h following each exercise trial. Serum was analyzed for sclerostin, cross linked telopeptide of type I collagen (CTXI), and procollagen type I amino-terminal propeptide (PINP). A significant time effect was found for sclerostin, which increased from pre-exercise to 5 min after exercise in both trials (100.2 to 131.6 pg/ml in HIIR; 102.3 to 135.8 pg/ml in HIIC, p<0.001) and returned to baseline levels by 1h, with no difference between exercise modes and no exercise mode-by-time interaction. CTXI did not significantly change following either trial. PINP showed an overall time effect following HIIR, but none of the post hoc pairwise comparisons were statistically significant. In young women, a single bout of high intensity exercise induces an increase in serum sclerostin, irrespective of exercise mode (impact versus no-impact), but this response is not accompanied by a response in either bone formation or resorption markers.


Assuntos
Remodelação Óssea/fisiologia , Reabsorção Óssea/sangue , Exercício Físico , Fragmentos de Peptídeos/sangue , Pró-Colágeno/sangue , Adulto , Reabsorção Óssea/fisiopatologia , Colágeno Tipo I/sangue , Ergometria , Teste de Esforço , Feminino , Humanos , Osteogênese/fisiologia , Descanso/fisiologia , Corrida , Saúde da Mulher
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...