Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nature ; 628(8006): 130-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448586

RESUMO

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Assuntos
Biomarcadores , Estudo de Associação Genômica Ampla , Metabolômica , Feminino , Humanos , Gravidez , Acetona/sangue , Acetona/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Colestase Intra-Hepática/sangue , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Estudos de Coortes , Estudo de Associação Genômica Ampla/métodos , Hipertensão/sangue , Hipertensão/genética , Hipertensão/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectroscopia de Ressonância Magnética , Análise da Randomização Mendeliana , Redes e Vias Metabólicas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo
2.
Nat Commun ; 15(1): 1945, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431663

RESUMO

Early development of the gut ecosystem is crucial for lifelong health. While infant gut bacterial communities have been studied extensively, the infant gut virome remains under-explored. To study the development of the infant gut virome over time and the factors that shape it, we longitudinally assess the composition of gut viruses and their bacterial hosts in 30 women during and after pregnancy and in their 32 infants during their first year of life. Using shotgun metagenomic sequencing applied to dsDNA extracted from Virus-Like Particles (VLPs) and bacteria, we generate 205 VLP metaviromes and 322 total metagenomes. With this data, we show that while the maternal gut virome composition remains stable during late pregnancy and after birth, the infant gut virome is dynamic in the first year of life. Notably, infant gut viromes contain a higher abundance of active temperate phages compared to maternal gut viromes, which decreases over the first year of life. Moreover, we show that the feeding mode and place of delivery influence the gut virome composition of infants. Lastly, we provide evidence of co-transmission of viral and bacterial strains from mothers to infants, demonstrating that infants acquire some of their virome from their mother's gut.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Vírus , Lactente , Humanos , Feminino , Gravidez , Mães , Bacteriófagos/genética , Bactérias/genética
3.
Sci Rep ; 14(1): 3911, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366085

RESUMO

The lack of standardization in the methods of DNA extraction from fecal samples represents the major source of experimental variation in the microbiome research field. In this study, we aimed to compare the metagenomic profiles and microbiome-phenotype associations obtained by applying two commercially available DNA extraction kits: the AllPrep DNA/RNA Mini Kit (APK) and the QIAamp Fast DNA Stool Mini Kit (FSK). Using metagenomic sequencing data available from 745 paired fecal samples from two independent population cohorts, Lifelines-DEEP (LLD, n = 292) and the 500 Functional Genomics project (500FG, n = 453), we confirmed significant differences in DNA yield and the recovered microbial communities between protocols, with the APK method resulting in a higher DNA concentration and microbial diversity. Further, we observed a massive difference in bacterial relative abundances at species-level between the APK and the FSK protocols, with > 75% of species differentially abundant between protocols in both cohorts. Specifically, comparison with a standard mock community revealed that the APK method provided higher accuracy in the recovery of microbial relative abundances, with the absence of a bead-beating step in the FSK protocol causing an underrepresentation of gram-positive bacteria. This heterogeneity in the recovered microbial composition led to remarkable differences in the association with anthropometric and lifestyle phenotypes. The results of this study further reinforce that the choice of DNA extraction method impacts the metagenomic profile of human gut microbiota and highlight the importance of harmonizing protocols in microbiome studies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , DNA Bacteriano/genética , DNA Bacteriano/análise , RNA Ribossômico 16S/genética , DNA , Microbiota/genética , Microbioma Gastrointestinal/genética , Análise de Sequência de DNA , Fezes/microbiologia , Metagenômica/métodos
4.
Cardiovasc Res ; 120(4): 372-384, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289866

RESUMO

AIMS: Gut microbiota have been linked to blood lipid levels and cardiovascular diseases (CVDs). The composition and abundance of gut microbiota trophic networks differ between ethnicities. We aim to evaluate the relationship between gut microbiotal trophic networks and CVD phenotypes. METHODS AND RESULTS: We included cross-sectional data from 3860 individuals without CVD history from 6 ethnicities living in the Amsterdam region participating in the prospective Healthy Life in Urban Setting (HELIUS) study. Genetic variants were genotyped, faecal gut microbiota were profiled, and blood and anthropometric parameters were measured. A machine learning approach was used to assess the relationship between CVD risk (Framingham score) and gut microbiota stratified by ethnicity. Potential causal relationships between gut microbiota composition and CVD were inferred by performing two-sample Mendelian randomization with hard CVD events from the Pan-UK Biobank and microbiome genome-wide association studies summary data from a subset of the HELIUS cohort (n = 4117). Microbial taxa identified to be associated with CVD by machine learning and Mendelian randomization were often ethnic-specific, but some concordance across ethnicities was found. The microbes Akkermansia muciniphila and Ruminococcaceae UCG-002 were protective against ischaemic heart disease in African-Surinamese and Moroccans, respectively. We identified a strong inverse association between blood lipids, CVD risk, and the combined abundance of the correlated microbes Christensenellaceae-Methanobrevibacter-Ruminococcaceae (CMR). The CMR cluster was also identified in two independent cohorts and the association with triglycerides was replicated. CONCLUSION: Certain gut microbes can have a potentially causal relationship with CVD events, with possible ethnic-specific effects. We identified a trophic network centred around Christensenellaceae, Methanobrevibacter, and various Ruminococcaceae, frequently lacking in South-Asian Surinamese, to be protective against CVD risk and associated with low triglyceride levels.


Assuntos
Doenças Cardiovasculares , Etnicidade , Microbioma Gastrointestinal , Humanos , Bactérias/genética , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/microbiologia , Estudos Transversais , Estudo de Associação Genômica Ampla , Lipídeos , Estudos Prospectivos , Fatores de Risco , Países Baixos
5.
ISME Commun ; 3(1): 116, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945978

RESUMO

Human milk microbiome studies are currently hindered by low milk bacterial/human cell ratios and often rely on 16S rRNA gene sequencing, which limits downstream analyses. Here, we aimed to find a method to study milk bacteria and assess bacterial sharing between maternal and infant microbiota. We tested four DNA isolation methods, two bacterial enrichment methods and three sequencing methods on mock communities, milk samples and negative controls. Of the four DNA isolation kits, the DNeasy PowerSoil Pro (PS) and MagMAX Total Nucleic Acid Isolation (MX) kits provided consistent 16S rRNA gene sequencing results with low contamination. Neither enrichment method substantially decreased the human metagenomic sequencing read-depth. Long-read 16S-ITS-23S rRNA gene sequencing biased the mock community composition but provided consistent results for milk samples, with little contamination. In contrast to 16S rRNA gene sequencing, 16S-ITS-23S rRNA gene sequencing of milk, infant oral, infant faecal and maternal faecal DNA from 14 mother-infant pairs provided sufficient resolution to detect significantly more frequent sharing of bacteria between related pairs compared to unrelated pairs. In conclusion, PS or MX kit-DNA isolation followed by 16S rRNA gene sequencing reliably characterises human milk microbiota, and 16S-ITS-23S rRNA gene sequencing enables studies of bacterial transmission in low-biomass samples.

6.
Front Microbiol ; 14: 1223120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637104

RESUMO

The rising use of pesticides in modern agriculture has led to a shift in disease burden in which exposure to these chemicals plays an increasingly important role. The human gut microbiome, which is partially responsible for the biotransformation of xenobiotics, is also known to promote biotransformation of environmental pollutants. Understanding the effects of occupational pesticide exposure on the gut microbiome can thus provide valuable insights into the mechanisms underlying the impact of pesticide exposure on health. Here we investigate the impact of occupational pesticide exposure on human gut microbiome composition in 7198 participants from the Dutch Microbiome Project of the Lifelines Study. We used job-exposure matrices in combination with occupational codes to retrieve categorical and cumulative estimates of occupational exposures to general pesticides, herbicides, insecticides and fungicides. Approximately 4% of our cohort was occupationally exposed to at least one class of pesticides, with predominant exposure to multiple pesticide classes. Most participants reported long-term employment, suggesting a cumulative profile of exposure. We demonstrate that contact with insecticides, fungicides and a general "all pesticides" class was consistently associated with changes in the gut microbiome, showing significant associations with decreased alpha diversity and a differing beta diversity. We also report changes in the abundance of 39 different bacterial taxa upon exposure to the different pesticide classes included in this study. Together, the extent of statistically relevant associations between gut microbial changes and pesticide exposure in our findings highlights the impact of these compounds on the human gut microbiome.

7.
Immunity ; 56(6): 1376-1392.e8, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37164013

RESUMO

Phage-displayed immunoprecipitation sequencing (PhIP-seq) has enabled high-throughput profiling of human antibody repertoires. However, a comprehensive overview of environmental and genetic determinants shaping human adaptive immunity is lacking. In this study, we investigated the effects of genetic, environmental, and intrinsic factors on the variation in human antibody repertoires. We characterized serological antibody repertoires against 344,000 peptides using PhIP-seq libraries from a wide range of microbial and environmental antigens in 1,443 participants from a population cohort. We detected individual-specificity, temporal consistency, and co-housing similarities in antibody repertoires. Genetic analyses showed the involvement of the HLA, IGHV, and FUT2 gene regions in antibody-bound peptide reactivity. Furthermore, we uncovered associations between phenotypic factors (including age, cell counts, sex, smoking behavior, and allergies, among others) and particular antibody-bound peptides. Our results indicate that human antibody epitope repertoires are shaped by both genetics and environmental exposures and highlight specific signatures of distinct phenotypes and genotypes.


Assuntos
Anticorpos , Bacteriófagos , Humanos , Antígenos , Epitopos/genética , Peptídeos
8.
Immunity ; 56(6): 1393-1409.e6, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37164015

RESUMO

Inflammatory bowel diseases (IBDs), e.g., Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases. A comprehensive overview of an IBD-specific antibody epitope repertoire is, however, lacking. Using high-throughput phage-display immunoprecipitation sequencing (PhIP-Seq), we identified antibodies against 344,000 antimicrobial, immune, and food antigens in 497 individuals with IBD compared with 1,326 controls. IBD was characterized by 373 differentially abundant antibody responses (202 overrepresented and 171 underrepresented), with 17% shared by both IBDs, 55% unique to CD, and 28% unique to UC. Antibody reactivities against bacterial flagellins dominated in CD and were associated with ileal involvement, fibrostenotic disease, and anti-Saccharomyces cerevisiae antibody positivity, but not with fecal microbiome composition. Antibody epitope repertoires accurately discriminated CD from controls (area under the curve [AUC] = 0.89), and similar discrimination was achieved when using only ten antibodies (AUC = 0.87). Individuals with IBD thus show a distinct antibody repertoire against selected peptides, allowing clinical stratification and discovery of immunological targets.


Assuntos
Bacteriófagos , Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Anticorpos , Epitopos
9.
BMC Med ; 20(1): 485, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522747

RESUMO

BACKGROUND: Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids that are associated with an increased risk of cardiometabolic diseases (CMD). However, there are still only limited insights into potential direct associations between BCAAs and a wide range of CMD parameters, especially those remaining after correcting for covariates and underlying causal relationships. METHODS: To shed light on these relationships, we systematically characterized the associations between plasma BCAA concentrations and a large panel of 537 CMD parameters (including atherosclerosis-related parameters, fat distribution, plasma cytokine concentrations and cell counts, circulating concentrations of cardiovascular-related proteins and plasma metabolites) in 1400 individuals from the Dutch population cohort LifeLines DEEP and 294 overweight individuals from the 300OB cohort. After correcting for age, sex, and BMI, we assessed associations between individual BCAAs and CMD parameters. We further assessed the underlying causality using Mendelian randomization. RESULTS: A total of 838 significant associations were detected for 409 CMD parameters. BCAAs showed both common and specific associations, with the most specific associations being detected for isoleucine. Further, we found that obesity status substantially affected the strength and direction of associations for valine, which cannot be corrected for using BMI as a covariate. Subsequent univariable Mendelian randomization (UVMR), after removing BMI-associated SNPs, identified seven significant causal relationships from four CMD traits to BCAA levels, mostly for diabetes-related parameters. However, no causal effects of BCAAs on CMD parameters were supported. CONCLUSIONS: Our cross-sectional association study reports a large number of associations between BCAAs and CMD parameters. Our results highlight some specific associations for isoleucine, as well as obesity-specific effects for valine. MR-based causality analysis suggests that altered BCAA levels can be a consequence of diabetes and alteration in lipid metabolism. We found no MR evidence to support a causal role for BCAAs in CMD. These findings provide evidence to (re)evaluate the clinical importance of individual BCAAs in CMD diagnosis, prevention, and treatment.


Assuntos
Aterosclerose , Diabetes Mellitus , Humanos , Isoleucina , Análise da Randomização Mendeliana , Estudos Transversais , Aminoácidos de Cadeia Ramificada/metabolismo , Obesidade/epidemiologia , Obesidade/genética , Valina/genética
10.
Nat Med ; 28(11): 2333-2343, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36216932

RESUMO

The levels of the thousands of metabolites in the human plasma metabolome are strongly influenced by an individual's genetics and the composition of their diet and gut microbiome. Here, by assessing 1,183 plasma metabolites in 1,368 extensively phenotyped individuals from the Lifelines DEEP and Genome of the Netherlands cohorts, we quantified the proportion of inter-individual variation in the plasma metabolome explained by different factors, characterizing 610, 85 and 38 metabolites as dominantly associated with diet, the gut microbiome and genetics, respectively. Moreover, a diet quality score derived from metabolite levels was significantly associated with diet quality, as assessed by a detailed food frequency questionnaire. Through Mendelian randomization and mediation analyses, we revealed putative causal relationships between diet, the gut microbiome and metabolites. For example, Mendelian randomization analyses support a potential causal effect of Eubacterium rectale in decreasing plasma levels of hydrogen sulfite-a toxin that affects cardiovascular function. Lastly, based on analysis of the plasma metabolome of 311 individuals at two time points separated by 4 years, we observed a positive correlation between the stability of metabolite levels and the amount of variance in the levels of that metabolite that could be explained in our analysis. Altogether, characterization of factors that explain inter-individual variation in the plasma metabolome can help design approaches for modulating diet or the gut microbiome to shape a healthy metabolome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Metaboloma/genética , Dieta , Microbioma Gastrointestinal/genética , Microbiota/genética , Fenótipo , Fezes/microbiologia
11.
Viruses ; 14(10)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298860

RESUMO

The human gut harbors numerous viruses infecting the human host, microbes, and other inhabitants of the gastrointestinal tract. Most of these viruses remain undiscovered, and their influence on human health is unknown. Here, we characterize viral genomes in gut metagenomic data from 1950 individuals from four population and patient cohorts. We focus on a subset of viruses that is highly abundant in the gut, remains largely uncharacterized, and allows confident complete genome identification­phages that belong to the class Caudoviricetes and possess genome terminal repeats. We detect 1899 species-level units belonging to this subset, 19% of which do not have complete representative genomes in major public gut virome databases. These units display diverse genomic features, are predicted to infect a wide range of microbial hosts, and on average account for <1% of metagenomic reads. Analysis of longitudinal data from 338 individuals shows that the composition of this fraction of the virome remained relatively stable over a period of 4 years. We also demonstrate that 54 species-level units are highly prevalent (detected in >5% of individuals in a cohort). Finally, we find 34 associations between highly prevalent phages and human phenotypes, 24 of which can be explained by the relative abundance of potential hosts.


Assuntos
Bacteriófagos , Vírus , Humanos , Metagenoma , Bacteriófagos/genética , Metagenômica , Vírus/genética , Genoma Viral , Sequências Repetidas Terminais
12.
Sci Transl Med ; 14(660): eabn7566, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044594

RESUMO

Organ transplantation is a life-saving treatment for patients with end-stage disease, but survival rates after transplantation vary considerably. There is now increasing evidence that the gut microbiome is linked to the survival of patients undergoing hematopoietic cell transplant, yet little is known about the role of the gut microbiome in solid organ transplantation. We analyzed 1370 fecal samples from 415 liver and 672 renal transplant recipients using shotgun metagenomic sequencing to assess microbial taxonomy, metabolic pathways, antibiotic resistance genes, and virulence factors. To quantify taxonomic and metabolic dysbiosis, we also analyzed 1183 age-, sex-, and body mass index-matched controls from the same population. In addition, a subset of 78 renal transplant recipients was followed longitudinally from pretransplantation to 24 months after transplantation. Our data showed that both liver and kidney transplant recipients suffered from gut dysbiosis, including lower microbial diversity, increased abundance of unhealthy microbial species, decreased abundance of important metabolic pathways, and increased prevalence and diversity of antibiotic resistance genes and virulence factors. These changes were found to persist up to 20 years after transplantation. Last, we demonstrated that the use of immunosuppressive drugs was associated with the observed dysbiosis and that the extent of dysbiosis was associated with increased mortality after transplantation. This study represents a step toward potential microbiome-targeted interventions that might influence the outcomes of recipients of solid organ transplantation.


Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Transplante de Órgãos , Disbiose , Microbioma Gastrointestinal/genética , Humanos , Fatores de Virulência
14.
Commun Biol ; 5(1): 565, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681050

RESUMO

The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.


Assuntos
Envelhecimento , Telômero , Envelhecimento/genética , Epigênese Genética , Feminino , Humanos , Estilo de Vida , Pais , Gravidez , Telômero/genética
15.
Gut Microbes ; 14(1): 2063016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35446234

RESUMO

To gain insight into the complex microbiome-gut-brain axis in irritable bowel syndrome (IBS), several modalities of biological and clinical data must be combined. We aimed to identify profiles of fecal microbiota and metabolites associated with IBS and to delineate specific phenotypes of IBS that represent potential pathophysiological mechanisms. Fecal metabolites were measured using proton nuclear magnetic resonance (1H-NMR) spectroscopy and gut microbiome using shotgun metagenomic sequencing (MGS) in a combined dataset of 142 IBS patients and 120 healthy controls (HCs) with extensive clinical, biological and phenotype information. Data were analyzed using support vector classification and regression and kernel t-SNE. Microbiome and metabolome profiles could distinguish IBS and HC with an area-under-the-receiver-operator-curve of 77.3% and 79.5%, respectively, but this could be improved by combining microbiota and metabolites to 83.6%. No significant differences in predictive ability of the microbiome-metabolome data were observed between the three classical, stool pattern-based, IBS subtypes. However, unsupervised clustering showed distinct subsets of IBS patients based on fecal microbiome-metabolome data. These clusters could be related plasma levels of serotonin and its metabolite 5-hydroxyindoleacetate, effects of psychological stress on gastrointestinal (GI) symptoms, onset of IBS after stressful events, medical history of previous abdominal surgery, dietary caloric intake and IBS symptom duration. Furthermore, pathways in metabolic reaction networks were integrated with microbiota data, that reflect the host-microbiome interactions in IBS. The identified microbiome-metabolome signatures for IBS, associated with altered serotonin metabolism and unfavorable stress response related to GI symptoms, support the microbiota-gut-brain link in the pathogenesis of IBS.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Microbiota , Fezes/química , Microbioma Gastrointestinal/fisiologia , Humanos , Síndrome do Intestino Irritável/metabolismo , Metaboloma , Serotonina/metabolismo
17.
Nat Genet ; 54(2): 100-106, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35115688

RESUMO

The human gut microbiome is a complex ecosystem that is involved in its host's metabolism, immunity and health. Although interindividual variations in gut microbial composition are mainly driven by environmental factors, some gut microorganisms are heritable and thus can be influenced by host genetics. In the past 5 years, 12 microbial genome-wide association studies (mbGWAS) with >1,000 participants have been published, yet only a few genetic loci have been consistently confirmed across multiple studies. Here we discuss the state of the art for mbGWAS, focusing on current challenges such as the heterogeneity of microbiome measurements and power issues, and we elaborate on potential future directions for genetic analysis of the microbiome.


Assuntos
Microbioma Gastrointestinal , Variação Genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Sistema ABO de Grupos Sanguíneos/genética , Variação Biológica da População , Fucosiltransferases/genética , Microbioma Gastrointestinal/genética , Genômica , Interações entre Hospedeiro e Microrganismos , Humanos , Lactase/genética , Polimorfismo de Nucleotídeo Único , Galactosídeo 2-alfa-L-Fucosiltransferase
18.
Nat Genet ; 54(2): 143-151, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35115690

RESUMO

Host genetics are known to influence the gut microbiome, yet their role remains poorly understood. To robustly characterize these effects, we performed a genome-wide association study of 207 taxa and 205 pathways representing microbial composition and function in 7,738 participants of the Dutch Microbiome Project. Two robust, study-wide significant (P < 1.89 × 10-10) signals near the LCT and ABO genes were found to be associated with multiple microbial taxa and pathways and were replicated in two independent cohorts. The LCT locus associations seemed modulated by lactose intake, whereas those at ABO could be explained by participant secretor status determined by their FUT2 genotype. Twenty-two other loci showed suggestive evidence (P < 5 × 10-8) of association with microbial taxa and pathways. At a more lenient threshold, the number of loci we identified strongly correlated with trait heritability, suggesting that much larger sample sizes are needed to elucidate the remaining effects of host genetics on the gut microbiome.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Fenômenos Fisiológicos Bacterianos , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Variação Genética , Interações entre Hospedeiro e Microrganismos , Lactase/genética , Bifidobacterium/fisiologia , Dieta , Fucosiltransferases/genética , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Redes e Vias Metabólicas , Metagenoma , Herança Multifatorial , Países Baixos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Cloreto de Sódio na Dieta , Triglicerídeos/sangue , Galactosídeo 2-alfa-L-Fucosiltransferase
19.
BMC Microbiol ; 22(1): 39, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35114943

RESUMO

BACKGROUND: Yoghurt contains live bacteria that could contribute via modulation of the gut microbiota to its reported beneficial effects such as reduced body weight gain and lower incidence of type 2 diabetes. To date, the association between yoghurt consumption and the composition of the gut microbiota is underexplored. Here we used clinical variables, metabolomics, 16S rRNA and shotgun metagenomic sequencing data collected on over 1000 predominantly female UK twins to define the link between the gut microbiota and yoghurt-associated health benefits. RESULTS: According to food frequency questionnaires (FFQ), 73% of subjects consumed yoghurt. Consumers presented a healthier diet pattern (healthy eating index: beta = 2.17 ± 0.34; P = 2.72x10-10) and improved metabolic health characterised by reduced visceral fat (beta = -28.18 ± 11.71 g; P = 0.01). According to 16S rRNA gene analyses and whole shotgun metagenomic sequencing approach consistent taxonomic variations were observed with yoghurt consumption. More specifically, we identified higher abundance of species used as yoghurt starters Streptococcus thermophilus (beta = 0.41 ± 0.051; P = 6.14x10-12) and sometimes added Bifidobacterium animalis subsp. lactis (beta = 0.30 ± 0.052; P = 1.49x10-8) in the gut of yoghurt consumers. Replication in 1103 volunteers from the LifeLines-DEEP cohort confirmed the increase of S. thermophilus among yoghurt consumers. Using food records collected the day prior to faecal sampling we showed than an increase in these two yoghurt bacteria could be transient. Metabolomics analysis revealed that B. animalis subsp. lactis was associated with 13 faecal metabolites including a 3-hydroxyoctanoic acid, known to be involved in the regulation of gut inflammation. CONCLUSIONS: Yoghurt consumption is associated with reduced visceral fat mass and changes in gut microbiome including transient increase of yoghurt-contained species (i.e. S. thermophilus and B. lactis).


Assuntos
Bactérias/genética , Microbioma Gastrointestinal/genética , Metaboloma , Metagenoma , Probióticos/administração & dosagem , Iogurte/microbiologia , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Bactérias/isolamento & purificação , Estudos de Coortes , Fezes/microbiologia , Feminino , Humanos , Masculino , Metabolômica/métodos , Metagenômica/métodos , Microbiota/genética , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Inquéritos e Questionários , Reino Unido
20.
Cell Rep ; 38(2): 110204, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021085

RESUMO

The crAss-like phages are a diverse group of related viruses that includes some of the most abundant viruses of the human gut. To explore their diversity and functional role in human population and clinical cohorts, we analyze gut metagenomic data collected from 1,950 individuals from the Netherlands. We identify 1,556 crAss-like phage genomes, including 125 species-level and 32 genus-level clusters absent from the reference databases used. Analysis of their genomic features shows that closely related crAss-like phages can possess strikingly divergent regions responsible for transcription, presumably acquired through recombination. Prediction of crAss-like phage hosts points primarily to bacteria of the phylum Bacteroidetes, consistent with previous reports. Finally, we explore the temporal stability of crAss-like phages over a 4-year period and identify associations between the abundance of crAss-like phages and several human phenotypes, including depletion of crAss-like phages in inflammatory bowel disease patients.


Assuntos
Bacteriófagos/genética , Microbioma Gastrointestinal/genética , Metagenoma/genética , Adulto , Idoso , Bactérias/genética , Bactérias/virologia , Feminino , Genoma Viral , Humanos , Doenças Inflamatórias Intestinais/virologia , Masculino , Metagenômica/métodos , Pessoa de Meia-Idade , Países Baixos , Obesidade/virologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...