Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cytogenet ; 15(1): 45, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36266706

RESUMO

It is hard to believe that all the cells of a human brain share identical genomes. Indeed, single cell genetic studies have demonstrated intercellular genomic variability in the normal and diseased brain. Moreover, there is a growing amount of evidence on the contribution of somatic mosaicism (the presence of genetically different cell populations in the same individual/tissue) to the etiology of brain diseases. However, brain-specific genomic variations are generally overlooked during the research of genetic defects associated with a brain disease. Accordingly, a review of brain-specific somatic mosaicism in disease context seems to be required. Here, we overview gene mutations, copy number variations and chromosome abnormalities (aneuploidy, deletions, duplications and supernumerary rearranged chromosomes) detected in the neural/neuronal cells of the diseased brain. Additionally, chromosome instability in non-cancerous brain diseases is addressed. Finally, theoretical analysis of possible mechanisms for neurodevelopmental and neurodegenerative disorders indicates that a genetic background for formation of somatic (chromosomal) mosaicism in the brain is likely to exist. In total, somatic mosaicism affecting the central nervous system seems to be a mechanism of brain diseases.

2.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171981

RESUMO

Mechanisms for somatic chromosomal mosaicism (SCM) and chromosomal instability (CIN) are not completely understood. During molecular karyotyping and bioinformatic analyses of children with neurodevelopmental disorders and congenital malformations (n = 612), we observed colocalization of regular chromosomal imbalances or copy number variations (CNV) with mosaic ones (n = 47 or 7.7%). Analyzing molecular karyotyping data and pathways affected by CNV burdens, we proposed a mechanism for SCM/CIN, which had been designated as "chromohelkosis" (from the Greek words chromosome ulceration/open wound). Briefly, structural chromosomal imbalances are likely to cause local instability ("wreckage") at the breakpoints, which results either in partial/whole chromosome loss (e.g., aneuploidy) or elongation of duplicated regions. Accordingly, a function for classical/alpha satellite DNA (protection from the wreckage towards the centromere) has been hypothesized. Since SCM and CIN are ubiquitously involved in development, homeostasis and disease (e.g., prenatal development, cancer, brain diseases, aging), we have metaphorically (ironically) designate the system explaining chromohelkosis contribution to SCM/CIN as the cytogenomic "theory of everything", similar to the homonymous theory in physics inasmuch as it might explain numerous phenomena in chromosome biology. Recognizing possible empirical and theoretical weaknesses of this "theory", we nevertheless believe that studies of chromohelkosis-like processes are required to understand structural variability and flexibility of the genome.


Assuntos
Instabilidade Cromossômica/genética , Cromossomos/genética , Mosaicismo/embriologia , Envelhecimento/genética , Aneuploidia , Centrômero/genética , Criança , Instabilidade Cromossômica/fisiologia , Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Cromossomos/fisiologia , Anormalidades Congênitas/genética , Variações do Número de Cópias de DNA , Diploide , Doença/genética , Feminino , Genoma/genética , Humanos , Cariotipagem/métodos , Masculino , Transtornos do Neurodesenvolvimento/genética , Federação Russa
3.
Case Rep Genet ; 2014: 505832, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24649379

RESUMO

We present a case of an interstitial subtelomeric 10q26 deletion in a male child with moderate developmental delay and minor dysmorphic features. Using array comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH), we have detected an interstitial deletion at 10q26.2q26.3 encompassing a 5.8 Mb region and spanning 24 genes. Interestingly, losses of this chromosome 10 region have not been previously associated with a phenotype outcome. According to an in silico evaluation, we have suggested that PPP2R2D and BNIP3 losses are likely a cause of developmental delay in the index patient. Our data allow to speculating that haploinsufficiency of these two genes in 10q26.3, which is usually ignored in the context of chromosome 10q deletions, has a phenotypic effect.

4.
Mol Cytogenet ; 6(1): 53, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24283533

RESUMO

BACKGROUND: Rett syndrome (RTT) is an X-linked neurodevelopmental disease affecting predominantly females caused by MECP2 mutations. Although RTT is classically considered a monogenic disease, a stable proportion of patients, who do not exhibit MECP2 sequence variations, does exist. Here, we have attempted at uncovering genetic causes underlying the disorder in mutation-negative cases by whole genome analysis using array comparative genomic hybridization (CGH) and a bioinformatic approach. RESULTS: Using BAC and oligonucleotide array CGH, 39 patients from RTT Russian cohort (in total, 354 RTT patients), who did not bear intragenic MECP2 mutations, were studied. Among the individuals studied, 12 patients were those with classic RTT and 27 were those with atypical RTT. We have detected five 99.4 kb deletions in chromosome Xq28 affecting MECP2 associated with mild manifestations of classic RTT and five deletions encompassing MECP2 spanning 502.428 kb (three cases), 539.545 kb (one case) and 877.444 kb (one case) associated with mild atypical RTT. A case has demonstrated somatic mosaicism. Regardless of RTT type and deletion size, all the cases exhibited mild phenotypes. CONCLUSIONS: Our data indicate for the first time that no fewer than 25% of RTT cases without detectable MECP2 mutations are caused by Xq28 microdeletions. Furthermore, Xq28 (MECP2) deletions are likely to cause mild subtypes of the disease, which can manifest as both classical and atypical RTT.

5.
Case Rep Genet ; 2013: 353028, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23476833

RESUMO

We report a case of an interstitial chromosome 20q11.21 microdeletion in a 7-year-old male child presenting with mild intellectual disability and facial dysmorphisms. Array comparative genomic hybridization (CGH) has shown that the deletion resulted in the loss of 68 genes, among which 5 genes (COX4I2, MYLK2, ASXL1, DNMT3B, and SNTA1) are disease causing. The size of the deletion was estimated to span 2.6 Mb. Only three cases of deletions encompassing this chromosomal region have been reported. The phenotype of the index patient was found to resemble the mildest cases of Bohring-Opitz syndrome that is caused by ASXL1 mutations. An in silico evaluation of the deleted genomic region has shown that benign genomic variations have never been observed to affect the ASXL1 gene, in contrast to the other disease-causing genes. As a result, it was suggested that ASXL1 loss is likely to be the main cause of the phenotypic manifestations. The present case report indicates that a loss of the disease-causing gene can produce a milder phenotype of a single gene condition.

6.
Mol Cytogenet ; 5(1): 46, 2012 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-23272938

RESUMO

BACKGROUND: Array comparative genomic hybridization (CGH) has been repeatedly shown to be a successful tool for the identification of genomic variations in a clinical population. During the last decade, the implementation of array CGH has resulted in the identification of new causative submicroscopic chromosome imbalances and copy number variations (CNVs) in neuropsychiatric (neurobehavioral) diseases. Currently, array-CGH-based technologies have become an integral part of molecular diagnosis and research in individuals with neuropsychiatric disorders and children with intellectual disability (mental retardation) and congenital anomalies. Here, we introduce the Russian cohort of children with intellectual disability, autism, epilepsy and congenital anomalies analyzed by BAC array CGH and a novel bioinformatic strategy. RESULTS: Among 54 individuals highly selected according to clinical criteria and molecular and cytogenetic data (from 2426 patients evaluated cytogenetically and molecularly between November 2007 and May 2012), chromosomal imbalances were detected in 26 individuals (48%). In two patients (4%), a previously undescribed condition was observed. The latter has been designated as meiotic (constitutional) genomic instability resulted in multiple submicroscopic rearrangements (including CNVs). Using bioinformatic strategy, we were able to identify clinically relevant CNVs in 15 individuals (28%). Selected cases were confirmed by molecular cytogenetic and molecular genetic methods. Eight out of 26 chromosomal imbalances (31%) have not been previously reported. Among them, three cases were co-occurrence of subtle chromosome 9 and 21 deletions. CONCLUSIONS: We conducted an array CGH study of Russian patients suffering from intellectual disability, autism, epilepsy and congenital anomalies. In total, phenotypic manifestations of clinically relevant genomic variations were found to result from genomic rearrangements affecting 1247 disease-causing and pathway-involved genes. Obviously, a significantly lesser part of them are true candidates for intellectual disability, autism or epilepsy. The success of our preliminary array CGH and bioinformatic study allows us to expand the cohort. According to the available literature, this is the first comprehensive array CGH evaluation of a Russian cohort of children with neuropsychiatric disorders and congenital anomalies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...