Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Biol Pharm Bull ; 47(4): 796-800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583951

RESUMO

Previous reports indicated that zinc deficiency could increase the risk of infectious diseases and developmental retardation in children. In experimental study, it has been reported that zinc deficiency during the embryonic period inhibited fetal growth, and disturbed neural differentiation and higher brain function later in adulthood. Although it has been suggested that zinc deficiency during development can have significant effects on neuronal differentiation and maturation, the molecular mechanisms of the effects of low zinc on neuronal differentiation during development have not been elucidated in detail. This study was performed to determine the effects of low zinc status on neurite outgrowth and collapsin response mediator protein 2 (CRMP2) signal pathway. Low zinc suppressed neurite outgrowth, and caused increase levels of phosphorylated CRMP2 (pCRMP2) relative to CRMP2, and decrease levels of phosphorylated glycogen synthase kinase 3ß (pGSK3ß) relative to GSK3ß in human neuroblastoma cell line (SH-SY5Y) cells on days 1, 2, and 3 of neuronal differentiation induction. Neurite outgrowth inhibited by low zinc was restored by treatment with the GSK3ß inhibitor CHIR99021. These results suggested that low zinc causes neurite outgrowth inhibition via phosphorylation of CRMP2 by GSK3ß. In conclusion, this study is the first to demonstrate that CRMP signaling is involved in the suppression of neurite outgrowth by low zinc.


Assuntos
Neuritos , Neuroblastoma , Criança , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Neuritos/metabolismo , Neuroblastoma/metabolismo , Fosforilação , Transdução de Sinais , Zinco/metabolismo
2.
Neurosci Lett ; 823: 137654, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38281695

RESUMO

The α7 neuronal nicotinic acetylcholine receptor (α7 nAChR) is a potential target for the development of Parkinson's disease (PD) therapeutics. α-Synuclein (α-Syn), a principal component of Lewy bodies (cytoplasmic inclusions), is a major contributor to PD pathophysiology. Previous studies have demonstrated that activating α7 nAChR protects against nigrostriatal dopamine degeneration in acute and chronic PD animal models induced by 6-hydroxydopamine and rotenone, respectively. In the present study, we investigated the effects of PNU282987, a selective α7 nAChR agonist, against α-Syn-induced neurotoxicity in α-SynWT-, α-SynA30P-, and α-SynE46K-N2a cells. PNU282987 exhibited substantial neuroprotection against both wild-type and mutant-type α-Syn-induced toxicity. Furthermore, PNU282987 promoted transcription factor EB activity and reduced intracellular α-Syn protein levels through autophagy induction. These results highlight the therapeutic potential of α7 nAChR activation in diseases characterized by α-Syn aggregation, such as PD.


Assuntos
Compostos Bicíclicos com Pontes , Síndromes Neurotóxicas , Doença de Parkinson , Receptores Nicotínicos , Animais , alfa-Sinucleína/metabolismo , Receptor Nicotínico de Acetilcolina alfa7 , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Benzamidas/farmacologia , Agonistas Nicotínicos/toxicidade , Receptores Nicotínicos/metabolismo
3.
J Alzheimers Dis ; 96(3): 1011-1017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980668

RESUMO

Currently, interventions from the preclinical stage are considered necessary for the treatment of Alzheimer's disease (AD). Previous studies have reported that vacuolar protein-sorting protein (VPS), a retromer construct, is involved in the pathogenic mechanisms of AD and Parkinson's disease. This study evaluated VPS26, VPS29, and VPS35 before and after the onset of cognitive decline in an App knock-in mouse model of AD that more closely resembles the human pathology than previous AD models. The results showed that the expression of VPS26 and VPS35 decreased before the onset of cognitive decline, suggesting the possibility of anti-amyloid-ß disease-modifying treatment targeting these proteins.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Transporte Proteico , Peptídeos beta-Amiloides/metabolismo
4.
Sci Rep ; 13(1): 15629, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731009

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. The pathological hallmark of PD is the appearance of intraneuronal cytoplasmic α-synuclein (α-Syn) aggregation, called Lewy bodies. α-Syn aggregation is deeply involved in the pathogenesis of PD. Oxidative stress is also associated with the progression of PD. In the present study, to investigate whether a hypoxia-inducible factor (HIF)-prolyl hydroxylase (PH) inhibitor, FG-4592 (also called roxadustat), has neuroprotective effects against α-Syn-induced neurotoxicity, we employed a novel α-Syn stably expressing cell line (named α-Syn-N2a cells) utilizing a piggyBac transposon system. In α-Syn-N2a cells, oxidative stress and cell death were induced by α-Syn, and FG-4592 showed significant protection against this neurotoxicity. However, FG-4592 did not affect α-Syn protein levels. FG-4592 triggered heme oxygenase-1 (HO-1) expression downstream of HIF-1α in a concentration-dependent manner. In addition, FG-4592 decreased the production of reactive oxygen species possibly via the activation of HO-1 and subsequently suppressed α-Syn-induced neurotoxicity. Moreover, FG-4592 regulated mitochondrial biogenesis and respiration via the induction of the peroxisome proliferator-activated receptor-γ coactivator-1α. As FG-4592 has various neuroprotective effects against α-Syn and is involved in drug repositioning, it may have novel therapeutic potential for PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Inibidores de Prolil-Hidrolase , Humanos , Prolil Hidroxilases , alfa-Sinucleína , Fármacos Neuroprotetores/farmacologia , Pró-Colágeno-Prolina Dioxigenase , Doença de Parkinson/tratamento farmacológico , Estresse Oxidativo , Glicina , Hipóxia
5.
Biochem Biophys Res Commun ; 640: 21-25, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495606

RESUMO

Primary brain calcification (PBC), also known as idiopathic basal ganglia calcification (IBGC), primary familial brain calcification (PFBC) and so on, is a rare intractable disease characterized by abnormal mineral deposits, including mostly calcium in the basal ganglia, thalamus, and cerebellum. The causative gene of familial PBC is SLC20A2, which encodes the phosphate transporter PiT-2. Despite this knowledge, the molecular mechanism underlying SLC20A2-associated PBC remains unclear. In the present study, we investigated whether haploinsufficiency or a dominant-negative mechanism reduced Pi uptake in two PiT-2 variants (T115 M and R467X). We demonstrated that the presence of T115 M or R467X had no dominant-negative effect on Pi transport activity of wild-type (WT). In addition, the subcellular localization of R467X completely differed from that of WT, indicating that there is no interaction between R467X and WT. Conversely, T115 M and WT showed almost the same localization. Therefore, we examined the interaction between T115 M and WT using the bioluminescence resonance energy transfer (BRET) method. Although WT and T115 M interact with each other, T115 M does not inhibit WT's Pi transport activity. These results suggest that the role of SLC20A2 in the pathogenesis of PBC may involve decreased intracellular Pi uptake by a haploinsufficiency mechanism rather than a dominant-negative mechanism; agents promoting PiT-2 dimerization may be promising potential therapeutic agents for PBC.


Assuntos
Doenças dos Gânglios da Base , Gânglios da Base , Calcinose , Doenças Neurodegenerativas , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III , Humanos , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/patologia , Transporte Biológico , Calcinose/genética , Calcinose/patologia , Doenças Neurodegenerativas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
6.
Toxicol Lett ; 374: 68-76, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565944

RESUMO

Methylmercury (MeHg) is a well-known developmental neurotoxin. Our previous research showed that the inhibition of neurite extension by exposure to a low level of MeHg (1 nM) was attributed to the decrease of acetylation of histone H3 and the increase of DNA methylation. However, the target molecules responsible for the neurological dysfunctions caused by MeHg exposure have not been identified. This study focused on a nuclear receptor subfamily 4 group A member 1 (NR4A1), which is reported to be related to synaptic plasticity and neurite extension. LUHMES cells, which are derived from human fetal brain, were treated with 0.1 and 1 nM MeHg beginning at two days of differentiation and continued for 6 consecutive days. The present study showed that exposure to a 1 nM MeHg during neural differentiation inhibited neuronal spike activity and neurite extension. Furthermore, MeHg exposure increased DNA methylation, and altered histone modifications for transcriptional repression in the NR4A1 promoter region to decrease the levels of NR4A1 expression. In addition, MeHg exposure inhibited the mobilization of cAMP response element-binding protein (CREB) and CREB binding protein (CBP) in the NR4A1 promoter region. These results suggest that MeHg inhibits the recruitment of the CREB-CBP complex to the NR4A1 promoter region and impairs neuronal functions associated with NR4A1 repression via a decrease in acetylation of histone H3 lysine 14 levels. Conclusively, this study demonstrated that MeHg exposure during neuronal differentiation could induce neurological dysfunctions even at a low concentration in vitro. These dysfunctions could be associated with the transcriptional repression of NR4A1 by the dissociation of CREB and CBP from the NR4A1 promoter region due to the alterations of epigenetic modifications.


Assuntos
Histonas , Compostos de Metilmercúrio , Humanos , Histonas/metabolismo , Compostos de Metilmercúrio/toxicidade , Neurônios/metabolismo , Epigênese Genética , Diferenciação Celular , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo
7.
8.
Front Pharmacol ; 13: 805379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185565

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder, characterized by the loss of upper and lower motor neurons, for which an effective treatment has yet to be developed. Previous reports have shown that excessive oxidative stress, related to mitochondrial dysfunction and the accumulation of misfolding protein, contributes to ALS pathology. In terms of treatment, it remains necessary to identify effective medicines for multiple therapeutic targets and have additive effects against several disorders. In this study, we investigated stem cells from human exfoliated deciduous teeth (SHED), which release many factors, such as neurotrophic factors and cytokines, and are applied to treat neurological diseases. Specifically, we examined whether SHED-conditioned medium (CM), i.e., the serum-free culture supernatant of SHED, reduced mutant SOD1-induced intracellular aggregates and neurotoxicity. We found that SHED-CM significantly suppressed the mutant SOD1-induced intracellular aggregates and neurotoxicity. The neuroprotective effects of SHED-CM are partly related to heat shock protein and the activation of insulin-like growth factor-1 receptor. SHED-CM also had a protective effect on induced pluripotent stem cell-derived motor neurons. Moreover, SHED-CM was effective against not only familial ALS but also sporadic ALS. Overall, these results suggest that SHED-CM could be a promising treatment for slowing the progression of ALS.

9.
Biochem Biophys Res Commun ; 593: 93-100, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35063775

RESUMO

Inorganic phosphate (Pi) is the second most abundant inorganic ion in the body. Since abnormalities in Pi metabolism are risk factors for various diseases, serum Pi levels are strictly controlled. Type-III sodium-dependent Pi transporters, PiT-1 (encoded by SLC20A1) and PiT-2 (encoded by SLC20A2), are distributed throughout the tissues of the body, including the central nervous system, and are known to be responsible for extracellular to intracellular Pi transport. Platelet-derived growth factor (PDGF) is a major growth factor of mesenchymal cells. PDGF-BB, a homodimer of PDGF-B, regulates intracellular Pi by increasing PiT-1 expression in vascular smooth muscle cells. However, the effects of PDGF-BB on Pi transporters in neurons have yet to be reported. Here, we investigated the effect of PDGF-BB on Pi transporters in human neuroblastoma SH-SY5Y cells. PDGF-BB did not induce SLC20A1 mRNA expression, but it increased the intracellular uptake of Pi via PiT-1 in SH-SY5Y cells. Among the signaling pathways associated with PDGF-BB, AKT signaling was shown to be involved in the increase in Pi transport. In addition, the PDGF-BB-induced increase in Pi mediated neuroprotective effects in SLC20A2-suppressed cells, in an in vitro model of the pathological condition found in idiopathic basal ganglia calcification. Moreover, the increase in Pi uptake was found to occur through promotion of intracellular PiT-1 translocation to the plasma membrane. Overall, these results indicate that PDGF-BB exerts neuroprotective effects via Pi transport, and they demonstrate the potential utility of PDGF-BB against abnormal Pi metabolism in neurons.


Assuntos
Becaplermina/metabolismo , Neuroblastoma/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Becaplermina/genética , Transporte Biológico , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Células Tumorais Cultivadas
10.
J Pharmacol Sci ; 148(1): 152-155, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34924120

RESUMO

Type-III sodium-dependent phosphate transporters 1 and 2 (PiT 1 and PiT 2, respectively) are proteins encoded by SLC20A1 and SLC20A2, respectively. The ubiquitous distribution of SLC20A1 and SLC20A2 mRNAs in mammalian tissues supports the housekeeping maintenance and homeostasis of intracellular inorganic phosphate (Pi), which is absorbed from interstitial fluid for normal cellular functions. SLC20A2 variants have been found in patients with idiopathic basal ganglia calcification (IBGC), also known as Fahr's disease or primary familial brain calcification (PFBC). Thus, disrupted Pi homeostasis is considered one of the major factors in the pathogenic mechanism of IBGC. In this paper, among the causative genes of IBGC, we focused specifically on PiT2, and its potential for a therapeutic target of IBGC.


Assuntos
Doenças dos Gânglios da Base/genética , Calcinose/genética , Doenças Neurodegenerativas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Animais , Doenças dos Gânglios da Base/metabolismo , Doenças dos Gânglios da Base/terapia , Calcinose/metabolismo , Calcinose/terapia , Homeostase/genética , Humanos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Fosfatos/metabolismo , RNA Mensageiro , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
11.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768913

RESUMO

Aggregation of α-synuclein (α-Syn) is implicated in the pathogenesis of Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Therefore, the removal of α-Syn aggregation could lead to the development of many new therapeutic agents for neurodegenerative diseases. In the present study, we succeeded in generating a new α-Syn stably expressing cell line using a piggyBac transposon system to investigate the neuroprotective effect of the flavonoid kaempferol on α-Syn toxicity. We found that kaempferol provided significant protection against α-Syn-related neurotoxicity. Furthermore, kaempferol induced autophagy through an increase in the biogenesis of lysosomes by inducing the expression of transcription factor EB and reducing the accumulation of α-Syn; thus, kaempferol prevented neuronal cell death. Moreover, kaempferol directly blocked the amyloid fibril formation of α-Syn. These results support the therapeutic potential of kaempferol in diseases such as synucleinopathies that are characterized by α-Syn aggregates.


Assuntos
Amiloide/efeitos dos fármacos , Autofagia , Quempferóis/farmacologia , Neuroblastoma/tratamento farmacológico , Síndromes Neurotóxicas/tratamento farmacológico , Substâncias Protetoras/farmacologia , alfa-Sinucleína/toxicidade , Amiloide/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Neuroblastoma/etiologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia
12.
Arch Toxicol ; 95(4): 1227-1239, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33454822

RESUMO

Methylmercury (MeHg) is a chemical substance that causes adverse effects on fetal development. However, the molecular mechanisms by which environmental MeHg affects fetal development have not been clarified. Recently, it has been suggested that the toxic effects of chemicals on fetal development are related alterations in epigenetics, such as DNA methylation and histone modification. In order to analyze the epigenetic effects of low-level MeHg exposure on neuronal development, we evaluated neuronal development both in vivo and in vitro. Pregnant mice (C57BL/6J) were orally administrated 3 mg/kg of MeHg once daily from embryonic day 12-14. Fetuses were removed on embryonic day 19 and brain tissues were collected. LUHMES cells were treated with 1 nM of MeHg for 6 days and collected on the last day of treatment. In both in vivo and in vitro samples, MeHg significantly suppressed neurite outgrowth. Decreased acetylated histone H3 (AcH3) levels and increased histone deacetylase (HDAC) 3 and HDAC6 levels were observed in response to MeHg treatment in both in vivo and in vitro experiments. In addition, increased DNA methylation and DNA methyltransferase 1 (DNMT1) levels were observed in both in vivo and in vitro experiments. The inhibition of neurite outgrowth resulting from MeHg exposure was restored by co-treatment with DNMT inhibitor or HDAC inhibitors. Our results suggest that neurological effects such as reduced neurite outgrowth due to low-level MeHg exposure result from epigenetic changes, including a decrease in AcH3 via increased HDAC levels and an increase in DNA methylation via increased DNMT1 levels.


Assuntos
Epigênese Genética/efeitos dos fármacos , Exposição Materna/efeitos adversos , Compostos de Metilmercúrio/toxicidade , Neurogênese/efeitos dos fármacos , Animais , Linhagem Celular , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/metabolismo , Feminino , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Compostos de Metilmercúrio/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Crescimento Neuronal/efeitos dos fármacos , Gravidez
13.
Sci Rep ; 10(1): 22157, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335227

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective and progressive loss of motor neurons. Although many drugs have entered clinical trials, few have shown effectiveness in the treatment of ALS. Other studies have shown that the stimulation of α7 nicotinic acetylcholine receptor (nAChR) can have neuroprotective effects in some models of neurodegenerative disease, as well as prevent glutamate-induced motor neuronal death. However, the effect of α7 nAChR agonists on ALS-associated mutant copper-zinc superoxide dismutase 1 (SOD1) aggregates in motor neurons remains unclear. In the present study, we examined whether α7 nAChR activation had a neuroprotective effect against SOD1G85R-induced toxicity in a cellular model for ALS. We found that α7 nAChR activation by PNU282987, a selective agonist of α7 nAChR, exhibited significant neuroprotective effects against SOD1G85R-induced toxicity via the reduction of intracellular protein aggregates. This reduction also correlated with the activation of autophagy through the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling pathway. Furthermore, the activation of α7 nAChRs was found to increase the biogenesis of lysosomes by inducing translocation of the transcription factor EB (TFEB) into the nucleus. These results support the therapeutic potential of α7 nAChR activation in diseases that are characterized by SOD1G85R aggregates, such as ALS.


Assuntos
Neurônios/metabolismo , Superóxido Dismutase-1/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cálcio/metabolismo , Humanos , Espaço Intracelular , Lisossomos/metabolismo , Mutação , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores , Agregados Proteicos , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Superóxido Dismutase-1/genética , Serina-Treonina Quinases TOR/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas
14.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599739

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disease caused by the loss of motor neurons. Although the pathogenesis of sporadic ALS (sALS) remains unclear, it has recently been suggested that disorders of microRNA (miRNA) may be involved in neurodegenerative conditions. The purpose of this study was to investigate miRNA levels in sALS and the target genes of miRNA. Microarray and real-time RT-PCR analyses revealed significantly-decreased levels of miR-139-5p and significantly increased levels of miR-5572 in the spinal cords of sALS patients compared with those in controls. We then focused on miR-5572, which has not been reported in ALS, and determined its target gene. By using TargetScan, we predicted SLC30A3 as the candidate target gene of miR-5572. In a previous study, we found decreased SLC30A3 levels in the spinal cords of sALS patients. We revealed that SLC30A3 was regulated by miR-5572. Taken together, these results demonstrate that the level of novel miRNA miR-5572 is increased in sALS and that SLC30A3 is one of the target genes regulated by miR-5572.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Biomarcadores/metabolismo , Proteínas de Transporte de Cátions/metabolismo , MicroRNAs/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Estudos de Casos e Controles , Proteínas de Transporte de Cátions/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico
15.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610684

RESUMO

The excessive intake of phosphate (Pi), or chronic kidney disease (CKD), can cause hyperphosphatemia and eventually lead to ectopic calcification, resulting in cerebrovascular diseases. It has been reported that reactive oxygen species (ROS), induced by high concentrations of Pi loading, play a key role in vascular calcification. Therefore, ROS suppression may be a useful treatment strategy for vascular calcification. 12AC3O is a newly synthesized gem-dihydroperoxide (DHP) that has potent antioxidant effects. In the present study, we investigated whether 12AC3O inhibited vascular calcification via its antioxidative capacity. To examine whether 12AC3O prevents vascular calcification under high Pi conditions, we performed Alizarin red and von Kossa staining, using the mouse aortic smooth muscle cell line p53LMAco1. Additionally, the effect of 12AC3O against oxidative stress, induced by high concentrations of Pi loading, was investigated using redox- sensitive dyes. Further, the direct trapping effect of 12AC3O on reactive oxygen species (ROS) was investigated by ESR analysis. Although high concentrations of Pi loading exacerbated vascular smooth muscle calcification, calcium deposition was suppressed by the treatment of both antioxidants and 12AC3O, suggesting that the suppression of ROS may be a candidate therapeutic approach for treating vascular calcification induced by high concentrations of Pi loading. Importantly, 12AC3O also attenuated oxidative stress. Furthermore, 12AC3O directly trapped superoxide anion and hydroxyl radical. These results suggest that ROS are closely involved in high concentrations of Pi-induced vascular calcification and that 12AC3O inhibits vascular calcification by directly trapping ROS.


Assuntos
Antioxidantes/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Peróxidos/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/metabolismo
16.
Front Neurosci ; 14: 407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457568

RESUMO

To evaluate the therapeutic potential of stem cells for neurodegenerative diseases, emphasis should be placed on clarifying the characteristics of the various types of stem cells. Among stem cells, dental pulp stem cells (DPSCs) are a cell population that is rich in cell proliferation and multipotency. It has been reported that transplantation of DPSCs has protective effects against models of neurodegenerative diseases. The protective effects are not only through differentiation into the target cell type for the disease but are also related to trophic factors released from DPSCs. Recently, it has been reported that serum-free culture supernatant of dental pulp stem cell-conditioned medium (DPCM) contains various trophic factors and cytokines and that DPCM is effective for models of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic Lateral Sclerosis (ALS). Moreover, the use of stem cells from human exfoliated deciduous teeth (SHEDs) has been considered. SHEDs are derived from deciduous teeth that have been disposed of as medical waste. SHEDs have higher differentiation capacity and proliferation ability than DPSCs. In addition, the serum-free culture supernatant of SHEDs (SHED-CM) contains more trophic factors, cytokines, and biometals than DPCM and also promotes neuroprotection. The neuroprotective effect of DPSCs, including those from deciduous teeth, will be used as the seeds of therapeutic drugs for neurodegenerative diseases. SHEDs will be used for further cell therapy of neurodegenerative diseases in the future. In this paper, we focused on the characteristics of DPSCs and their potential for neurodegenerative diseases.

17.
Cureus ; 12(12): e12407, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33532164

RESUMO

Idiopathic basal ganglia calcification (IBGC), also known as Fahr's disease or primary familial brain calcification, manifests as bilaterally symmetric calcifications in the brain. Clinical symptoms range from movement disorders to cognitive impairment and psychiatric symptoms. Since 2012, IBGC has been reported as an inherited disorder with several causative genes, including SLC20A2; however, the genotype-phenotype association remains unclear. Furthermore, longitudinal follow-up studies investigating the prognosis of neuropsychiatric symptoms in IBGC are lacking. A 36-year-old woman who experienced recurrent psychosis since the age of 30 years was admitted to our hospital. Her symptoms included delusions, hallucinations, disorganized speech, and grossly disorganized behavior. Cranial CT revealed calcification of the bilateral basal ganglia and dentate nucleus. The possibility of metabolic or endocrinological disorders causing secondary calcification was excluded via laboratory examinations. The genetic analysis revealed SLC20A2 mutation, and therefore, she was diagnosed with definite IBGC. At the age of 37, 42, and 43 years, similar psychosis recurred due to a decrease in medication. Each episode was relieved within one week with a low dose of risperidone (1.5-2 mg/day p.o.). Eventually, remission was maintained with risperidone (1.5 mg/day). To our knowledge, genetically confirmed case of IBGC with psychosis has been rarely reported. Recurrent psychosis can be the sole symptom of SLC20A2-associated IBGC and may be remitted with a low dose of risperidone. Literature review including eight case reports shows no superiority between medications. Although our case indicates that a low dose of antipsychotics can alleviate symptoms without any side effects and should be continued to prevent relapse in some patients with IBGC, there has been still shortage of the clinical evidence. Further longitudinal studies on genotype-phenotype associations may expedite personalized medicine for patients with IBGC.

18.
Sci Rep ; 9(1): 17288, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754123

RESUMO

Idiopathic basal ganglia calcification (IBGC) is a rare intractable disease characterized by abnormal mineral deposits, including mostly calcium in the basal ganglia, thalamus, and cerebellum. SLC20A2 is encoding the phosphate transporter PiT-2 and was identified in 2012 as the causative gene of familial IBGC. In this study, we investigated functionally two novel SLC20A2 variants (c.680C > T, c.1487G > A) and two SLC20A2 variants (c.82G > A, c.358G > C) previously reported from patients with IBGC. We evaluated the function of variant PiT-2 using stable cell lines. While inorganic phosphate (Pi) transport activity was abolished in the cells with c.82G > A, c.358G > C, and c.1487G > A variants, activity was maintained at 27.8% of the reference level in cells with the c.680C > T variant. Surprisingly, the c.680C > T variant had been discovered by chance in healthy members of an IBGC family, suggesting that partial preservation of Pi transport activity may avoid the onset of IBGC. In addition, we confirmed that PiT-2 variants could be translocated into the cell membrane to the same extent as PiT-2 wild type. In conclusion, we investigated the PiT-2 dysfunction of four SLC20A2 variants and suggested that a partial reduced Pi transport function of PiT-2 might not be sufficient to induce brain calcification of IBGC.


Assuntos
Doenças dos Gânglios da Base/genética , Gânglios da Base/patologia , Calcinose/genética , Doenças Neurodegenerativas/genética , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/deficiência , Adulto , Idoso de 80 Anos ou mais , Gânglios da Base/citologia , Doenças dos Gânglios da Base/patologia , Calcinose/patologia , Membrana Celular/metabolismo , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Doenças Neurodegenerativas/patologia , Linhagem , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética
19.
Int J Mol Sci ; 20(12)2019 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-31208129

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons. In previous our study, an ethanol extract of Brazilian green propolis (EBGP) prevented mutant copper-zinc superoxide dismutase 1 (SOD1mut)-induced neurotoxicity. This paper aims to reveal the effects of p-coumaric acid (p-CA), an active ingredient contained in EBGP, against SOD1mut-induced neurotoxicity. We found that p-CA reduced the accumulation of SOD1mut subcellular aggregation and prevented SOD1mut-associated neurotoxicity. Moreover, p-CA attenuated SOD1mut-induced oxidative stress and endoplasmic reticulum stress, which are significant features in ALS pathology. To examine the mechanism of neuroprotective effects, we focused on autophagy, and we found that p-CA induced autophagy. Additionally, the neuroprotective effects of p-CA were inhibited by chloroquine, an autophagy inhibiter. Therefore, these results obtained in this paper suggest that p-CA prevents SOD1mut-induced neurotoxicity through the activation of autophagy and provides a potential therapeutic approach for ALS.


Assuntos
Autofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Propionatos/farmacologia , Superóxido Dismutase-1/antagonistas & inibidores , Superóxido Dismutase-1/genética , Linhagem Celular , Ácidos Cumáricos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos
20.
Sci Rep ; 9(1): 5698, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952898

RESUMO

Causative genes in patients with idiopathic basal ganglia calcification (IBGC) (also called primary familial brain calcification (PFBC)) have been reported in the past several years. In this study, we surveyed the clinical and neuroimaging data of 70 sporadic patients and 16 families (86 unrelated probands in total) in Japan, and studied variants of PDGFB gene in the patients. Variant analyses of PDGFB showed four novel pathogenic variants, namely, two splice site variants (c.160 + 2T > A and c.457-1G > T), one deletion variant (c.33_34delCT), and one insertion variant (c.342_343insG). Moreover, we developed iPS cells (iPSCs) from three patients with PDGFB variants (c.160 + 2T > A, c.457-1G > T, and c.33_34 delCT) and induced endothelial cells. Enzyme-linked immunoassay analysis showed that the levels of PDGF-BB, a homodimer of PDGF-B, in the blood sera of patients with PDGFB variants were significantly decreased to 34.0% of that of the control levels. Those in the culture media of the endothelial cells derived from iPSCs of patients also significantly decreased to 58.6% of the control levels. As the endothelial cells developed from iPSCs of the patients showed a phenotype of the disease, further studies using IBGC-specific iPSCs will give us more information on the pathophysiology and the therapy of IBGC in the future.


Assuntos
Gânglios da Base/fisiopatologia , Encefalopatias/fisiopatologia , Calcinose/fisiopatologia , Linfocinas/genética , Mutação , Fator de Crescimento Derivado de Plaquetas/genética , Adolescente , Idoso , Gânglios da Base/diagnóstico por imagem , Encefalopatias/diagnóstico por imagem , Encefalopatias/genética , Calcinose/diagnóstico por imagem , Calcinose/genética , Células Endoteliais , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...