Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 7(1): 108, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734809

RESUMO

Immobilization of graphene quantum dots (GQDs) on a solid support is crucial to prevent GQDs from aggregation in the form of solid powder and facilitate the separation and recycling of GQDs after use. Herein, spatially dispersed GQDs are post-synthetically coordinated within a two-dimensional (2D) and water-stable zirconium-based metal-organic framework (MOF). Unlike pristine GQDs, the obtained GQDs immobilized on 2D MOF sheets show photoluminescence in both suspension and dry powder. Chemical and photoluminescent stabilities of MOF-immobilized GQDs in water are investigated, and the use of immobilized GQDs in the photoluminescent detection of copper ions is demonstrated. Findings here shed the light on the use of 2D MOFs as a platform to further immobilize GQDs with various sizes and distinct chemical functionalities for a range of applications.

2.
Chem Rec ; 24(1): e202200266, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36995072

RESUMO

The ever-growing demand of human society for clean and reliable energy sources spurred a substantial academic interest in exploring the potential of biological resources for developing energy generation and storage systems. As a result, alternative energy sources are needed in populous developing countries to compensate for energy deficits in an environmentally sustainable manner. This review aims to evaluate and summarize the recent progress in bio-based polymer composites (PCs) for energy generation and storage. The articulated review provides an overview of energy storage systems, e. g., supercapacitors and batteries, and discusses the future possibilities of various solar cells (SCs), using both past research progress and possible future developments as a basis for discussion. These studies examine systematic and sequential advances in different generations of SCs. Developing novel PCs that are efficient, stable, and cost-effective is of utmost importance. In addition, the current state of high-performance equipment for each of the technologies is evaluated in detail. We also discuss the prospects, future trends, and opportunities regarding using bioresources for energy generation and storage, as well as the development of low-cost and efficient PCs for SCs.

3.
ACS Appl Mater Interfaces ; 15(38): 44607-44620, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37722031

RESUMO

Bioactive and mechanically stable metal-based scaffolds are commonly used for bone defect repair. However, conventional metal-based scaffolds induce nonuniform cell growth, limiting damaged tissue restoration. Here, we develop a plasma nanotechnology-enhanced graphene quantum dot (GQD) hydrogel-magnesium (Mg) composite scaffold for functional bone defect repair by integrating a bioresource-derived nitrogen-doped GQD (NGQD) hydrogel into the Mg ZK60 alloy. Each scaffold component brings major synergistic advantages over the current alloy-based state of the art, including (1) mechanical support of the cortical bone and calcium deposition by the released Mg2+ during degradation; (2) enhanced uptake, migration, and distribution of osteoblasts by the porous hydrogel; and (3) improved osteoblast adhesion and proliferation, osteogenesis, and mineralization by the NGQDs in the hydrogel. Through an in vivo study, the hybrid scaffold with the much enhanced osteogenic ability induced by the above synergy promotes a more rapid, uniform, and directional bone growth across the hydrogel channel, compared with the control Mg-based scaffold. This work provides insights into the design of multifunctional hybrid scaffolds, which can be applied in other areas well beyond the demonstrated bone defect repair.


Assuntos
Grafite , Pontos Quânticos , Alicerces Teciduais , Hidrogéis/farmacologia , Engenharia Tecidual , Magnésio/farmacologia , Grafite/farmacologia , Osteogênese , Ligas/farmacologia , Regeneração Óssea
4.
Small ; 19(20): e2206813, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36732883

RESUMO

One of the major challenges on the way to low-cost, simple, and effective cancer treatments is the lack of smart anticancer drug delivery materials with the requisite of site-specific and microenvironment-responsive properties. This work reports the development of plasma-engineered smart drug nanocarriers (SDNCs) containing chitosan and nitrogen-doped graphene quantum dots (NGQDs) for drug delivery in a pH-responsive manner. Through a customized microplasma processing, a highly cross-linked SDNC with only 4.5% of NGQD ratio can exhibit enhanced toughness up to threefold higher than the control chitosan group, avoiding the commonly used high temperatures and toxic chemical cross-linking agents. The SDNCs demonstrate improved loading capability for doxorubicin (DOX) via π-π interactions and stable solid-state photoluminescence to monitor the DOX loading and release through the Förster resonance energy transfer (FRET) mechanism. Moreover, the DOX loaded SDNC exhibits anticancer effects against cancer cells during cytotoxicity tests at minimum concentration. Cellular uptake studies confirm that the DOX loaded SDNC can be successfully internalized into the nucleus after 12 h incubation period. This work provides new insights into the development of smart, environmental-friendly, and biocompatible nanographene hydrogels for the next-generation biomedical applications.


Assuntos
Antineoplásicos , Quitosana , Grafite , Pontos Quânticos , Pontos Quânticos/química , Grafite/química , Quitosana/química , Hidrogéis , Antineoplásicos/farmacologia , Antineoplásicos/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Portadores de Fármacos/química
5.
ACS Appl Mater Interfaces ; 14(46): 52289-52300, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36349361

RESUMO

Environmental contamination and energy shortage are among the most critical global issues that require urgent solutions to ensure sustainable ecological balance. Rapid and ultrasensitive monitoring of water quality against pollutant contaminations using a low-cost, easy-to-operate, and environmentally friendly technology is a promising yet not commonly available solution. Here, we demonstrate the effective use of plasma-converted natural bioresources for environmental monitoring. The energy-efficient microplasmas operated at ambient conditions are used to convert diverse bioresources, including fructose, chitosan, citric acid, lignin, cellulose, and starch, into heteroatom-doped graphene quantum dots (GQDs) with controlled structures and functionalities for applications as fluorescence-based environmental nanoprobes. The simple structure of citric acid enables the production of monodispersed 3.6 nm averaged-size GQDs with excitation-independent emissions, while the saccharides including fructose, chitosan, lignin, cellulose, and starch allow the synthesis of GQDs with excitation-dependent emissions due to broader size distribution. Moreover, the presence of heteroatoms such as N and/or S in the chemical structures of chitosan and lignin coupled with the highly reactive species generated by the plasma facilitates the one-step synthesis of N, S-codoped GQDs, which offer selective detection of toxic environmental contaminants with a low limit of detection of 7.4 nM. Our work provides an insight into the rapid and green fabrication of GQDs with tunable emissions from natural resources in a scalable and sustainable manner, which is expected to generate impact in the environmental safety, energy conversion and storage, nanocatalysis, and nanomedicine fields.


Assuntos
Quitosana , Grafite , Pontos Quânticos , Pontos Quânticos/química , Grafite/química , Lignina , Nitrogênio/química , Ácido Cítrico/química , Amido , Frutose
6.
J Mater Chem B ; 10(46): 9654-9661, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36382376

RESUMO

Rapid and accurate detection of cancer and neurological diseases is a major issue that has received great attention recently to enable early therapy treatment. In this report, we utilize an atmospheric pressure microplasma system to convert a natural bioresource chitosan into nitrogen-doped graphene quantum dots (NGQDs) for photoluminescence (PL) based selective detection of cancer and neurotransmitter biomarkers. By adjusting the pH conditions during the detection, multiple biomolecules including uric acid (UA), folic acid (FA), epinephrine (EP), and dopamine (DA) can be simultaneously detected with high selectivity and sensitivity using a single material only. Linear relationships between the biomarker concentration and the PL intensity ratio are obtained starting from 0.8 to 100 µM with low limits of detection (LoDs) of 123.1, 157.9, 80.5, and 91.3 nM for UA, EP, FA, and DA, respectively. Our work provides an insight into the multiple biomarker detection using a single material only, which is beneficial for the early detection and diagnosis of cancer and neurological diseases, as well as the development of new drugs.


Assuntos
Grafite , Neoplasias , Pontos Quânticos , Humanos , Grafite/química , Pontos Quânticos/química , Nitrogênio/química , Dopamina/química , Ácido Úrico , Neurotransmissores , Biomarcadores
7.
Nanomaterials (Basel) ; 12(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36364683

RESUMO

The exponential increase in global energy demand in daily life prompts us to search for a bioresource for energy production and storage. Therefore, in developing countries with large populations, there is a need for alternative energy resources to compensate for the energy deficit in an environmentally friendly way and to be independent in their energy demands. The objective of this review article is to compile and evaluate the progress in the development of quantum dots (QDs) for energy generation and storage. Therefore, this article discusses the energy scenario by presenting the basic concepts and advances of various solar cells, providing an overview of energy storage systems (supercapacitors and batteries), and highlighting the research progress to date and future opportunities. This exploratory study will examine the systematic and sequential advances in all three generations of solar cells, namely perovskite solar cells, dye-sensitized solar cells, Si cells, and thin-film solar cells. The discussion will focus on the development of novel QDs that are economical, efficient, and stable. In addition, the current status of high-performance devices for each technology will be discussed in detail. Finally, the prospects, opportunities for improvement, and future trends in the development of cost-effective and efficient QDs for solar cells and storage from biological resources will be highlighted.

8.
Biosensors (Basel) ; 12(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35884264

RESUMO

Inflammatory diseases are some of the most common diseases in different parts of the world. So far, most attention has been paid to the role of environmental factors in the inflammatory process. The diagnosis of inflammatory changes is an important goal for the timely diagnosis and treatment of various metastatic, autoimmune, and infectious diseases. Graphene quantum dots (GQDs) can be used for the diagnosis of inflammation due to their excellent properties, such as high biocompatibility, low toxicity, high stability, and specific surface area. Additionally, surface-enhanced Raman spectroscopy (SERS) allows the very sensitive structural detection of analytes at low concentrations by amplifying electromagnetic fields generated by the excitation of localized surface plasmons. In recent years, the use of graphene quantum dots amplified by SERS has increased for the diagnosis of inflammation. The known advantages of graphene quantum dots SERS include non-destructive analysis methods, sensitivity and specificity, and the generation of narrow spectral bands characteristic of the molecular components present, which have led to their increased application. In this article, we review recent advances in the diagnosis of inflammation using graphene quantum dots and their improved detection of SERS. In this review study, the graphene quantum dots synthesis method, bioactivation method, inflammatory biomarkers, plasma synthesis of GQDs and SERS GQD are investigated. Finally, the detection mechanisms of SERS and the detection of inflammation are presented.


Assuntos
Grafite , Pontos Quânticos , Grafite/química , Humanos , Inflamação/diagnóstico , Pontos Quânticos/química , Análise Espectral Raman
9.
ACS Omega ; 7(1): 223-229, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036694

RESUMO

Rapid and sensitive detection of dopamine (DA) is important for the diagnostics of neurological disorders and the development of new drugs. Here, we report microplasma synthesis of surfaced-functionalized silicon quantum dots (SiQDs) at ambient conditions. The synthesized SiQDs with useful properties including abundant surface functionalities, stable colloidal dispersion, and photoluminescence (PL) emission enable direct label-free detection of DA, providing a wide sensing range from 0.83 to 83.33 µM and a low detection limit of 0.32 µM. Our work provides a new direction for the synthesis of colloidal SiQDs and the understanding of SiQD-based PL probes for biomolecule sensing.

10.
ACS Appl Mater Interfaces ; 14(1): 1670-1683, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34843204

RESUMO

pH sensing using active nanomaterials is promising in many fields ranging from chemical reactions to biochemistry, biomedicine, and environmental safety especially in the nanoscale. However, it is still challenging to achieve nanotechnology-enhanced rapid, sensitive, and quantitative pH detection with stable, biocompatible, and cost-effective materials. Here, we report a rational design of nitrogen-doped graphene quantum dot (NGQD)-based pH sensors by boosting the NGQD pH sensing properties via microplasma-enabled band-structure engineering. Effectively and economically, the emission-tunable NGQDs can be synthesized from earth-abundant chitosan biomass precursor by controlling the microplasma chemistry under ambient conditions. Advanced spectroscopy measurements and density functional theory (DFT) calculations reveal that functionality-tuned NGQDs with enriched -OH functional groups and stable and large Stokes shift along the variations of pH value can achieve rapid, label-free, and ionic-stable pH sensing with a wide sensing range from pH 1.8 to 13.6. The underlying mechanism of pH sensing is related to the protonation/deprotonation of -OH group of NGQDs, leading to the maximum pH-dependent luminescence peak shift along with the bandgap broadening or narrowing. In just 1 h, a single microplasma jet can produce a stable colloidal NGQD dispersion with 10 mg/mL concentration lasting for at least 100 pH detections, and the process is scalable. This approach is generic and opens new avenues for nanographene-based materials synthesis for applications in sensing, nanocatalysis, energy generation and conversion, quantum optoelectronics, bioimaging, and drug delivery.

11.
ACS Appl Mater Interfaces ; 13(50): 60413-60424, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34894653

RESUMO

The alluring properties of a luminescent graphene quantum dot (GQD)-based nanocomposite are unquestionable to realize many advanced applications, such as sweat pH sensors. The well-suited hydrophilic polymers to host GQDs can face an unavoidable swelling behavior, which deteriorates the mechanical stability, whereas the hydrophobic polymers can prevent swelling but at the same time barricade the analyte pathways to GQDs. To resolve the two aforementioned obstacles, we develop a nanocomposite film containing nitrogen-doped GQDs (NGQDs) incorporated into a transparent, elastic, and self-healable polymer matrix, composed of a hydrophobic n-butyl acrylate segment and a hydrophilic N-(hydroxymethyl)acrylamide segment for wearable healthcare pH sensors on the human body. Besides serving as the fluorescence source, NGQDs are also designed as a nano-cross-linker to promote abundant chemical and physical interactions within the nanocomposite network. This synergetic effect gives rise to a 10-fold higher mechanical strength, 7-fold increment in Young's modulus, 4-fold increment in toughness, and 15-fold more sensitivity in pH detection (pH 3-10) compared to those of the pristine copolymer and NGQDs, respectively. Moreover, the mechanically enhanced nanocomposite possesses a high self-healing efficiency (94%) at room temperature even under water and demonstrates a stable sensing performance after repetitive usage for 30 days. Our work provides insights into the simple preparation of human skinlike nanocomposite elastomers usable for wearable pH sensors.

12.
ACS Appl Mater Interfaces ; 13(40): 47465-47477, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34592812

RESUMO

Regarding dihydrogen as a clean and renewable energy source, ammonia borane (NH3BH3, AB) was considered as a chemical H2-storage and H2-delivery material due to its high storage capacity of dihydrogen (19.6 wt %) and stability at room temperature. To advance the development of efficient and recyclable catalysts for hydrolytic dehydrogenation of AB with parallel insight into the reaction mechanism, herein, ZIF-67-derived fcc-Co@porous carbon nano/microparticles (cZIF-67_nm/cZIF-67_µm) were explored to promote catalytic dehydrogenation of AB and generation of H2(g). According to kinetic and computational studies, zero-order dependence on the concentration of AB, first-order dependence on the concentration of cZIF-67_nm (or cZIF-67_µm), and a kinetic isotope effect value of 2.45 (or 2.64) for H2O/D2O identify the Co-catalyzed cleavage of the H-OH bond, instead of the H-BH2NH3 bond, as the rate-determining step in the hydrolytic dehydrogenation of AB. Despite the absent evolution of H2(g) in the reaction of cZIF-67 and AB in the organic solvents (i.e., THF or CH3OH) or in the reaction of cZIF-67 and water, Co-mediated activation of AB and formation of a Co-H intermediate were evidenced by theoretical calculation, infrared spectroscopy in combination with an isotope-labeling experiment, and reactivity study toward CO2-to-formate/H2O-to-H2 conversion. Moreover, the computational study discovers a synergistic interaction between AB and the water cluster (H2O)9 on fcc-Co, which shifts the splitting of water into an exergonic process and lowers the thermodynamic barrier for the generation and desorption of H2(g) from the Co-H intermediates. With the kinetic and mechanistic study of ZIF-67-derived Co@porous carbon for catalytic hydrolysis of AB, the spatiotemporal control on the generation of H2(g) for the treatment of inflammatory diseases will be further investigated in the near future.

13.
ACS Appl Mater Interfaces ; 13(29): 34572-34583, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34255481

RESUMO

The effective and precise detection of cancer and neurotransmitter biomarkers including folic acid (FA), dopamine (DA), and epinephrine (EP) are essential for early detection and diagnosis of cancer and neurological disorders and for the development of new drugs. However, it remains challenging to detect FA, DA, and EP with high selectivity and sensitivity with a single material. Herein, we report a photoluminescence (PL)-based selective sensing of FA, DA, and EP with nitrogen-doped graphene quantum dots (NGQDs) synthesized from biocompatible chitosan under ambient conditions using atmospheric pressure microplasmas. By regulating the pH, the selective detection is achieved in broad ranges from 0.8 to 80 µM for FA and 0.4 to 100 µM for both DA and EP with the very low limits of detections of 81.7, 57.8, and 16.7 nM for FA, DA, and EP, respectively. The developed PL sensing method shows the high throughput of 5000 detections per hour. Moreover, highly stable colloidal NGQD dispersion with 100 µg/mL concentration for at least 100 PL detections is produced in 1 h by a single microplasma, and the process is scalable. The mechanisms of the outstanding performance are related to the enhanced, size-dependent π-π stacking attraction between the NGQDs and the pH-regulated chemical states of the analytes and the associated pH-specific photo-induced electron transfer and PL.


Assuntos
Biomarcadores Tumorais/análise , Grafite/química , Substâncias Luminescentes/química , Neurotransmissores/análise , Pontos Quânticos/química , Dopamina/análise , Epinefrina/análise , Ácido Fólico/análise , Limite de Detecção , Medições Luminescentes , Nitrogênio/química
14.
Polymers (Basel) ; 12(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317211

RESUMO

The use of electrically conductive materials to impart electrical properties to substrates for cell attachment proliferation and differentiation represents an important strategy in the field of tissue engineering. This paper discusses the concept of electro-active structures and their roles in tissue engineering, accelerating cell proliferation and differentiation, consequently leading to tissue regeneration. The most relevant carbon-based materials used to produce electro-active structures are presented, and their main advantages and limitations are discussed in detail. Particular emphasis is put on the electrically conductive property, material synthesis and their applications on tissue engineering. Different technologies, allowing the fabrication of two-dimensional and three-dimensional structures in a controlled way, are also presented. Finally, challenges for future research are highlighted. This review shows that electrical stimulation plays an important role in modulating the growth of different types of cells. As highlighted, carbon nanomaterials, especially graphene and carbon nanotubes, have great potential for fabricating electro-active structures due to their exceptional electrical and surface properties, opening new routes for more efficient tissue engineering approaches.

15.
Nanotechnology ; 31(48): 485001, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-32721942

RESUMO

The aim of this study is to optimize the production of colloidal graphene quantum dots (GQD) in an aqueous solution containing sodium dodecyl sulfate (SDS) treated by an argon microplasma jet operated in open ambient air. The plasma has been investigated by optical emission spectroscopy and electrical measurements, and the produced GQDs have been studied by Raman spectroscopy, photoluminescence, UV-visible absorption, transmission electron microscopy and atomic force microscopy. We mainly focus on the influence of the polarity of the voltage applied to generate the microplasma. Although the deposited power is higher when using a positive polarity, the energy efficiency is also higher thanks to a faster synthesis rate. To understand the underlying mechanisms, we reproduced the experiments with the addition of [Formula: see text] in the aqueous solution. Results show that the GQD synthesis operates in two steps with SDS fragmentation followed by an electrolysis-related process. We demonstrate that the positive polarity performs better due to higher fragmentation rate.

16.
ACS Appl Mater Interfaces ; 11(38): 35319-35326, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31423762

RESUMO

Graphene quantum dots (GQD) with an average size of 3.1 nm were incorporated into a mesoporous porphyrinic zirconium-based metal-organic framework (MOF) by direct impregnation to render the donor-acceptor charge transfer from GQDs to porphyrinic linkers. The hybrid material still possesses around half porosity of the pristine MOF and shows a 100-fold higher electrical conductivity compared to that of the parent MOF. By utilizing the porphyrinic linkers as catalytically active units, the GQD-MOF material exhibits a better electrochemical sensing activity toward nitrite in aqueous solutions compared to both the pristine MOF and GQD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...