Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 25(16): e202300843, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38763896

RESUMO

This study explores the feasibility of in situ Lithium (Li) analysis in Magnesium-Lithium (MgLi) alloys using Laser-Induced Breakdown Spectroscopy (LIBS). It focuses on two Li emission lines: Li I 670.8 nm (resonance) and Li I 610.4 nm (non-resonance). Comparing characteristics at atmospheric and low pressures, self-reversal signatures are observed in both emission lines at atmospheric pressure, complicating the analysis. Challenges in suppressing self-reversal effect using laser energy and detection window adjustments are noted. To address this, a compact chamber (80 mm×50 mm×50 mm) with adjustable pressure (using a portable vacuum pump) is developed. Lowering the pressure significantly reduces self-reversal effect, particularly for the Li I 610.4 nm line. This makes Li I 610.4 nm more suitable for analyzing high Lithium concentrations in MgLi alloys. Using standard samples, such as LA91 (8 % Li) and LA141 (14 % Li), the study successfully obtains Li I 610.4 nm spectra with proportional Li emission intensities. Even with a commercially affordable time-integrated charge-coupled device (CCD) detection system, the results indicate the efficacy of this approach for in situ Li analysis in MgLi alloys.

2.
Sci Rep ; 11(1): 21999, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754063

RESUMO

High-sensitivity detection of hydrogen (H) contained in zircaloy-4, a commonly used material for nuclear fuel containers, is crucial in a nuclear power plant. Currently, H detection is performed via gas chromatography, which is an offline and destructive method. In this study, we developed a technique based on metastable excited-state He-assisted excitation to achieve excellent quality of H emission spectra in double-pulse orthogonal laser-induced breakdown spectroscopy (LIBS). The production of metastable excited-state He atoms is optimized by using LiF as sub-target material. The results show a narrow full-width-at-half-maximum of 0.5 Å for the H I 656.2 nm emission line, with a detection limit as low as 0.51 mg/kg. Thus, using this novel online method, H in zircaloy-4 can be detected efficiently, even at very low concentrations.

3.
Anal Chem ; 89(9): 4951-4957, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28394120

RESUMO

An experimental study is conducted in search of the much needed experimental method for practical and minimally destructive analysis of hydrogen (H) and deuterium (D) in a nuclear power plant. For this purpose, a picosecond (ps) Nd:YAG laser is employed and operated with 300-500 µJ output energies in a variety of ambient gases at various gas pressures. The sample chamber used is specially designed small quartz tube with an open end that can be tightly fitted to the sample surface. It is found that ambient Ar gas at reduced pressure of around 0.13 kPa gives the best spectral quality featuring fully resolved H and D emission lines with clearly detectable intensities and practically free from surface water interference. The D emission intensities measured from zircaloy plates containing various concentrations of D impurity are shown to yield a linear calibration line with extrapolated zero intercept, offering its potential application to quantitative analysis. The estimated detection limit of less than 10 ppm is well below the sensitivity limit of around 600 ppm required for the regular inspection of zircaloy tubes in a heavy water nuclear power plant. The use of the exceedingly low laser energy is shown to offer an additional advantage of minimum destructive effect marked by the resulted tiny craters of about 5 µm diameter with 25 µm depth. These results promise the potential development of the desired alternative analytical tool for regular in situ and real time inspection of the zircaloy tubes in a heavy water power plant.

4.
Appl Opt ; 54(25): 7592-7, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26368882

RESUMO

We have conducted an experimental study exploring the possible application of laser-induced breakdown spectroscopy (LIBS) for practical and highly sensitive detection of metal impurities in water. The spectrochemical measurements were carried out by means of a 355 nm Nd-YAG laser within N2 and He gas at atmospheric pressures as high as 2 kPa. The aqueous samples were prepared as thin films deposited on indium-tin oxide (ITO) glass by an electrolysis process. The resulting emission spectra suggest that concentrations at parts per billion levels may be achieved for a variety of metal impurities, and it is hence potentially feasible for rapid inspection of water quality in the semiconductor and pharmaceutical industries, as well as for cooling water inspection for possible leakage of radioactivity in nuclear power plants. In view of its relative simplicity, this LIBS equipment offers a practical and less costly alternative to the standard use of inductively coupled plasma-mass spectrometry (ICP-MS) for water samples, and its further potential for in situ and mobile applications.

5.
Appl Opt ; 46(34): 8298-304, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18059672

RESUMO

This experiment was carried out to address the need for overcoming the difficulties encountered in hydrogen analysis by means of plasma emission spectroscopy in atmospheric ambient gas. The result of this study on zircaloy-4 samples from a nuclear power plant demonstrates the possibility of attaining a very sharp emission line from impure hydrogen with a very low background and practical elimination of spectral contamination of hydrogen emission arising from surface water and water vapor in atmospheric ambient gas. This was achieved by employing ultrapure ambient helium gas as well as the proper defocusing of the laser irradiation and a large number of repeated precleaning laser shots at the same spot of the sample surface. Further adjustment of the gating time has led to significant reduction of spectral width and improvement of detection sensitivity to ~50 ppm. Finally, a linear calibration curve was also obtained for the zircaloy-4 samples with zero intercept. These results demonstrate the feasibility of this technique for practical in situ and quantitative analysis of hydrogen impurity in zircaloy-4 tubes used in a light water nuclear power plant.

6.
Anal Chem ; 79(7): 2703-7, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17341055

RESUMO

It is found in this work that variation of laser power density in low-pressure plasma spectrochemical analysis of hydrogen affects sensitively the hydrogen emission intensity from the unwanted and yet ubiquitous presence of ambient water. A special experimental setup has been devised to allow the simple condition of focusing/defocusing the laser beam on the sample surface. When applied to zircaloy-4 samples prepared with various hydrogen impurity concentrations using low-pressure helium surrounding gas, good-quality hydrogen emission lines of very high signal to background ratios were obtained with high reproducibility under weakly focused or largely defocused laser irradiation. These measurements resulted in a linear calibration line with nonzero intercept representing the residual contribution from the recalcitrant water molecules. It was further shown that this can be evaluated and taken into account by means of the measured intensity ratio between the oxygen and zirconium emission lines. We have demonstrated the applicability of this experimental approach for quantitative determination of hydrogen impurity concentrations in the samples considered.


Assuntos
Hidrogênio/análise , Lasers , Ressonância de Plasmônio de Superfície/métodos , Zircônio/química , Calibragem , Pressão , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/instrumentação , Propriedades de Superfície
7.
Anal Chem ; 78(16): 5768-73, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16906722

RESUMO

It was proved that the analysis of deuterium can be conducted using laser-induced plasma spectroscopy. By selecting the appropriate surrounding gas, its pressure, and gating time of the detection system, it was shown that the emission lines of both hydrogen (H(alpha)) and deuterium (D(alpha)), separated by only 0.179 nm, can be fully resolved. A linear calibration curve was also obtained, indicating that this technique has the potential for quantitative analysis of deuterium. The minimum detection limit achieved in this stage of research was estimated to be 50 ppm. We have also shown that this technique can be used as a simple and rapid method for D and H analysis in solid samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA