Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 8(7): 900-911, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37140260

RESUMO

A method for subsurface visualization and characterization of hidden subsurface nano-structures based on scanning tunelling microscopy/spectroscopy (STM/STS) has been developed. Nano-objects buried under a metal surface up to several tens of nanometers can be visualized through the metal surface and characterized with STM without destroying the sample. This non-destructive method exploits quantum well (QW) states formed by partial electron confinement between the surface and buried nano-objects. The specificity of STM allows for nano-objects to be singled out and easily accessed. Their burial depth can be determined by analysing the oscillatory behaviour of the electron density at the surface of the sample, while the spatial distribution of electron density can give additional information about their size and shape. The proof of concept was demonstrated with different materials such as Cu, Fe, and W in which the nanoclusters of Ar, H, Fe and Co were buried. For each material, the maximal depth of subsurface visualisation is determined by the material parameters and ranges from several nanometers to several tens of nanometers. To demonstrate the ultimate depth of subsurface STM-vision as the principal limit of our approach, the system of Ar nanoclusters embedded into a single-crystalline Cu(110) matrix has been chosen since it represents the best combination of the mean free path, smooth interface and inner electron focusing. With this system we experimentally demonstrated that Ar nanoclusters of several nanometers large buried as deep as 80 nm can still be detected, characterized and imaged. The ultimate depth of this ability is estimated to be 110 nm. This approach using QW states paves the way for enhanced 3D characterization of nanostructures hidden well below a metallic surface.

2.
Microsyst Nanoeng ; 8: 51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586140

RESUMO

We present a new approach to tuning-fork-based atomic force microscopy for utilizing advanced "tip-on-chip" probes with high sensitivity and broad compatibility. Usually, such chip-like probes with a size reaching 2 × 2 mm2 drastically perturb the oscillation of the tuning fork, resulting in poor performance in its intrinsic force sensing. Therefore, restoring initial oscillatory characteristics is necessary for regaining high sensitivity. To this end, we developed a new approach consisting of three basic steps: tuning-fork rebalancing, revamping holder-sensor fixation, and electrode reconfiguration. Mass rebalancing allows the tuning fork to recover the frequency and regain high Q-factor values up to 104 in air and up to 4 × 104 in ultra-high vacuum conditions. The floating-like holder-fixation using soft wires significantly reduces energy dissipation from the mounting elements. Combined with the soft wires, reconfigured electrodes provide electrical access to the chip-like probe without intervening in the force-sensing signal. Finally, our easy-to-implement approach allows converting the atomic force microscopy tip from a passive tool to a dedicated microdevice with extended functionality.

3.
Phys Rev Lett ; 124(20): 207203, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501071

RESUMO

Chiral magnetism, wherein there is a preferred sense of rotation of the magnetization, determines the chiral nature of magnetic textures such as skyrmions, domain walls, or spin spirals. Current research focuses on identifying and controlling the interactions that define the magnetic chirality in thin film multilayers. The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) and, recently, the dipolar interactions have been reported. Here, we experimentally demonstrate that an indirect interlayer exchange interaction can be used as an additional tool to effectively manipulate the magnetic chirality. We image the chirality of magnetic domain walls in a coupled bilayer system using scanning electron microscopy with polarization analysis. Upon increasing the interlayer exchange coupling, we induce a transition of the magnetic chirality from clockwise rotating Néel walls to degenerate Bloch-Néel domain walls and we confirm our findings with micromagnetic simulations. In multilayered systems relevant for skyrmion research, a uniform magnetic chirality across the magnetic layers is often desired. Additional simulations show that this can be achieved for reduced IDMI values (up to 30%) when exploiting the interlayer exchange interaction. This work opens up new ways to control and tailor the magnetic chirality by the interlayer exchange interaction.

4.
Phys Rev Lett ; 123(15): 157201, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702306

RESUMO

The stabilization of chiral magnetic domain walls and skyrmions has been attributed to the actively investigated Dzyaloshinskii-Moriya interaction. Recently, however, predictions were made that suggest dipolar interactions can also stabilize chiral domain walls and skyrmions, but direct experimental evidence has been lacking. Here we show that dipolar interactions can indeed stabilize chiral domain walls by directly imaging the magnetic domain walls using scanning electron microscopy with polarization analysis in archetype Pt/CoB/Ir thin film multilayers. We further demonstrate the competition between the Dzyaloshinskii-Moriya and dipolar interactions by imaging a reversal of the domain wall chirality as a function of the magnetic layer thickness. Finally, we suggest that this competition can be tailored by a Ruderman-Kittel-Kasuya-Yosida interaction. Our work therefore reveals that dipolar interactions play a key role in the stabilization of chiral spin textures. This insight will open up new routes towards balancing interactions for the stabilization of chiral magnetism.

5.
J Phys Chem A ; 123(37): 8036-8042, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31411884

RESUMO

Scanning probe-assisted patterning methods already demonstrated a high degree of capabilities on submicrometer scales. However, the throughput is still far from its potential because of complexity or fragility of the probes for exploiting thermal effects, chemical reactions, and voltage-induced processes in various patterning operations. Here, we present a new approach to thermomechanical patterning by implementing a multitasking atomic force microscopy (AFM) probe: the functionalized planar probes. In this method, we can generate a tunable thermal gradient between the tip and the sample, wherein they remain in the noncontact regime. In principle, the capillary instability provoked by the van der Waals interaction yields a pull-off force toward the tip. Hence, locally rising protrusions form features at any selected position on a polymer surface without any chemical reaction or irreversible transformation. These multitasking probe-integrated AFMs can pave the way for a remarkable freedom in determining the operation regime on submicrometer surface-patterning applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...