Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(23): 10259-10269, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35649281

RESUMO

The metal-insulator transition driven by electronic correlations is one of the most fundamental concepts in condensed matter. In mixed-valence compounds, this transition is often accompanied by charge ordering (CO), resulting in the emergence of complex phases and unusual behaviors. The famous example is the archetypal mixed-valence mineral magnetite, Fe3O4, exhibiting a complex charge-ordering below the Verwey transition, whose nature has been a subject of long-time debates. In our study, using high-resolution X-ray diffraction supplemented by resistance measurements and DFT+DMFT calculations, the electronic, magnetic, and structural properties of recently synthesized mixed-valence Fe4O5 are investigated under pressure to ∼100 GPa. Our calculations, consistent with experiment, reveal that at ambient conditions Fe4O5 is a narrow-gap insulator characterized by the original Verwey-type CO. Under pressure Fe4O5 undergoes a series of electronic and magnetic-state transitions with an unusual compressional behavior above ∼50 GPa. A site-dependent collapse of local magnetic moments is followed by the site-selective insulator-to-metal transition at ∼84 GPa, occurring at the octahedral Fe sites. This phase transition is accompanied by a 2+ to 3+ valence change of the prismatic Fe ions and collapse of CO. We provide a microscopic explanation of the complex charge ordering in Fe4O5 which "unifies" it with the behavior of two archetypal examples of charge- or bond-ordered materials, magnetite and rare-earth nickelates (RNiO3). We find that at low temperatures the Verwey-type CO competes with the "trimeron"/"dimeron" charge ordered states, allowing for pressure/temperature tuning of charge ordering. Summing up the available data, we present the pressure-temperature phase diagram of Fe4O5.

2.
Nat Commun ; 9(1): 4142, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297769

RESUMO

A Verwey-type charge-ordering transition in magnetite at 120 K leads to the formation of linear units of three iron ions with one shared electron, called trimerons. The recently-discovered iron pentoxide (Fe4O5) comprising mixed-valent iron cations at octahedral chains, demonstrates another unusual charge-ordering transition at 150 K involving competing formation of iron trimerons and dimerons. Here, we experimentally show that applied pressure can tune the charge-ordering pattern in Fe4O5 and strongly affect the ordering temperature. We report two charge-ordered phases, the first of which may comprise both dimeron and trimeron units, whereas, the second exhibits an overall dimerization involving both the octahedral and trigonal-prismatic chains of iron in the crystal structure. We link the dramatic change in the charge-ordering pattern in the second phase to redistribution of electrons between the octahedral and prismatic iron chains, and propose that the average oxidation state of the iron cations can pre-determine a charge-ordering pattern.

3.
Inorg Chem ; 56(11): 6251-6263, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28520414

RESUMO

We investigated the structural, vibrational, magnetic, and electronic properties of the recently synthesized CaCo3V4O12 double perovskite with the high-spin (HS) Co2+ ions in a square-planar oxygen coordination at extreme conditions of high pressures and low temperatures. The single-crystal X-ray diffraction and Raman spectroscopy studies up to 60 GPa showed a conservation of its cubic crystal structure but indicated a crossover near 30 GPa. Above 30 GPa, we observed both an abnormally high "compressibility" of the Co-O bonds in the square-planar oxygen coordination and a huge anisotropic displacement of HS-Co2+ ions in the direction perpendicular to the oxygen planes. Although this effect is reminiscent of a continuous HS → LS transformation of the Co2+ ions, it did not result in the anticipated shrinkage of the cell volume because of a certain "stiffing" of the bonds of the Ca and V cations. We verified that the oxidation states of all the cations did not change across this crossover, and hence, no charge-transfer effects were involved. Consequently, we proposed that CaCo3V4O12 could undergo a phase transition at which the large HS-Co2+ ions were pushed out of the oxygen planes because of lattice compression. The antiferromagnetic transition in CaCo3V4O12 at 100 K was investigated by neutron powder diffraction at ambient pressure. We established that the magnetic moments of the Co2+ ions were aligned along one of the cubic axes, and the magnetic structure had a 2-fold periodicity along this axis, compared to the crystallographic one.

4.
J Phys Condens Matter ; 25(38): 385401, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23988740

RESUMO

We report results of a powder x-ray diffraction (XRD) study of vanadium sesquioxide, V2O3, under pressurization in a neon pressure-transmitting medium up to 57 GPa. We have established a bulk modulus value for corundum-type V2O3 of B0 = 150 GPa at B' = 4. This bulk modulus value is the lowest among those known for the corundum-type-structured oxides, e.g. Al2O3, α-Fe2O3, Cr2O3, Ti2O3, and α-Ga2O3. We have proposed that this might be related to the difference in the electronic band structures: at room temperature V2O3 is metallic, but the above corundum-structured sesquioxides are semiconducting or insulating. Around ∼21-27 and ∼50 GPa we registered changes in the XRD patterns that might be addressed to phase transitions. These transitions were sluggish upon room-temperature compression, and hence we additionally facilitated them by the laser heating of one sample. We have refined the XRD patterns of only the first high-pressure phase in an orthorhombic lattice of a Rh2O3(II)-type. Our findings significantly extend the knowledge of the P-T phase diagram of V2O3 and advance the understanding of its properties. We speculate that the elastic properties of V2O3 can be closely linked to its electronic band structure and, consequently, we propose that slightly doped V2O3 (e.g. with Cr) could be a potential candidate for systems in which the bulk modulus value may be remarkably switched by moderate pressure or temperature.

5.
Chemphyschem ; 12(13): 2476-84, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21717564

RESUMO

Experimental data on the pressure dependence of unit cell parameters for the gas hydrates of ethane (cubic structure I, pressure range 0-2 GPa), xenon (cubic structure I, pressure range 0-1.5 GPa) and the double hydrate of tetrahydrofuran+xenon (cubic structure II, pressure range 0-3 GPa) are presented. Approximation of the data using the cubic Birch-Murnaghan equation, P=1.5B(0)[(V(0)/V)(7/3)-(V(0)/V)(5/3)], gave the following results: for ethane hydrate V(0)=1781 Å(3) , B(0)=11.2 GPa; for xenon hydrate V(0)=1726 Å(3) , B(0)=9.3 GPa; for the double hydrate of tetrahydrofuran+xenon V(0)=5323 Å(3) , B(0)=8.8 GPa. In the last case, the approximation was performed within the pressure range 0-1.5 GPa; it is impossible to describe the results within a broader pressure range using the cubic Birch-Murnaghan equation. At the maximum pressure of the existence of the double hydrate of tetrahydrofuran+xenon (3.1 GPa), the unit cell volume was 86% of the unit cell volume at zero pressure. Analysis of the experimental data obtained by us and data available from the literature showed that 1) the bulk modulus of gas hydrates with classical polyhedral structures, in most cases, are close to each other and 2) the bulk modulus is mainly determined by the elasticity of the hydrogen-bonded water framework. Variable filling of the cavities with guest molecules also has a substantial effect on the bulk modulus. On the basis of the obtained results, we concluded that the bulk modulus of gas hydrates with classical polyhedral structures and existing at pressures up to 1.5 GPa was equal to (9±2) GPa. In cases when data on the equations of state for the hydrates were unavailable, the indicated values may be recommended as the most probable ones.


Assuntos
Gases/química , Água/química , Etano/química , Furanos/química , Pressão , Temperatura , Xenônio/química
6.
J Phys Chem B ; 113(20): 7257-62, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19438280

RESUMO

Experimental investigation of the phase diagram of the system carbon dioxide-water at pressures up to 2.7 GPa has been carried out in order to explain earlier controversial results on the decomposition curves of the hydrates formed in this system. According to X-ray diffraction data, solid and/or liquid phases of water and CO2 coexist in the system at room temperature within the pressure range from 0.8 to 2.6 GPa; no clathrate hydrates are observed. The results of neutron diffraction experiments involving the samples with different CO2/H2O molar ratios, and the data on the phase diagram of the system carbon dioxide-water show that CO2 hydrate of cubic structure I is the only clathrate phase present in this system under studied P-T conditions. We suppose that in the cubic structure I hydrate of CO2 multiple occupation of the large hydrate cavities with CO2 molecules takes place. At pressure of about 0.8 GPa this hydrate decomposes into components indicating the presence of the upper pressure boundary of the existence of clathrate hydrates in the system.

7.
J Phys Chem B ; 110(43): 21788-92, 2006 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17064141

RESUMO

Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).

8.
J Phys Chem B ; 110(6): 2840-6, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16471893

RESUMO

For the first time, the compositions of argon and methane high-pressure gas hydrates have been directly determined. The studied samples of the gas hydrates were prepared under high-pressure conditions and quenched at 77 K. The composition of the argon hydrate (structure H, stable at 460-770 MPa) was found to be Ar.(3.27 +/- 0.17)H(2)O. This result shows a good agreement with the refinement of the argon hydrate structure using neutron powder diffraction data and helps to rationalize the evolution of hydrate structures in the Ar-H(2)O system at high pressures. The quenched argon hydrate was found to dissociate in two steps. The first step (170-190 K) corresponds to a partial dissociation of the hydrate and the self-preservation of a residual part of the hydrate with an ice cover. Presumably, significant amounts of ice Ic form at this stage. The second step (210-230 K) corresponds to the dissociation of the residual part of the hydrate. The composition of the methane hydrate (cubic structure I, stable up to 620 MPa) was found to be CH(4).5.76H(2)O. Temperature dependence of the unit cell parameters for both hydrates has been also studied. Calculated from these results, the thermal expansivities for the structure H argon hydrate are alpha(a) = 76.6 K(-1) and alpha(c) = 77.4 K(-1) (in the 100-250 K temperature range) and for the cubic structure I methane hydrate are alpha(a) = 32.2 K(-1), alpha(a) = 53.0 K(-1), and alpha(a) = 73.5 K(-1) at 100, 150, and 200 K, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA