Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 40(25): 6469-80, 2001 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-11720503

RESUMO

The preparation and physical characterization are reported for the single-molecule magnet salts [M(Cp')(2)](n)()[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (M = Fe, n = 1, Cp' = C(5)Me(5) (2a), C(5)H(5) (2b); M = Co, n = 1, Cp' = C(5)Me(5) (2c), C(5)H(5) (2d); M = Fe, n = 2, Cp' = C(5)Me(5) (2e), C(5)H(5) (2f)) to investigate the effects of paramagnetic cations on the magnetization relaxation behavior of [Mn(12)]- anionic single-molecule magnets. Complex 2a.2H(2)O crystallizes in the orthorhombic space group Aba2, with cell dimensions at 173 K of a = 25.6292(2) A, b = 25.4201(3) A, c = 29.1915(2) A, and Z = 4. Complex 2c.2CH(2)Cl(2).C(6)H(14) crystallizes in the monoclinic space group P2(1)/c, with cell dimensions at 173 K of a = 17.8332(6) A, b = 26.2661(9) A, c = 36.0781(11) A, beta = 92.8907(3) degrees, and Z = 4. These two salts consist of either paramagnetic [Fe(C(5)Me(5))(2)]+ cations or diamagnetic [Co(C(5)Me(5))(2)]+ cations, and [Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)]- anions. The structures of the anions in the two salts are similar, consisting of a central Mn(4)O(4) cubane moiety, surrounded by a nonplanar ring of eight Mn atoms that are bridged by and connected to the cube via mu(3)-O(2)- ions. The oxidation states of four Mn sites out of eight outer Mn ions in complex 2a were assigned to be +2.75 from the valence bond sum analysis although the disordering of bridging carboxylates prevents more precise determination. On the other hand in complex 2c, one Mn site out of eight outer Mn ions was identified as a Mn(II) ion, accommodating the "extra" electron; this was deduced by a valence bond sum analysis. Thus, the anion in complex 2c has a Mn(II)(1)Mn(III)(7)Mn(IV)(4) oxidation state description. The Jahn-Teller axes of the Mn(III) ions in both anions are roughly aligned in one direction. All complexes studied exhibit a single out-of-phase ac magnetic susceptibility (chi"(M)) signal in the 4.6-4.8 K range for complexes 2a-2d and in the 2.8-2.9 K range for complexes 2e and 2f at 1 kHz ac frequency. The temperature of the chi"(M) peaks is frequency dependent, as expected for single-molecule magnets. From Arrhenius plots of the frequency dependence of the temperature of the chi"(M) maxima, the effective energy barriers U(eff) for changing spin from "up" to spin "down" were estimated to be 50-54 K for complexes 2a-2d and 27-28 K for complexes 2e and 2f. The least-squares fits of the reduced magnetization data indicate that both complexes 2a and 2d have ground states of S = (21)/(2). High-frequency EPR spectra were recorded for complex 2a at frequencies of 217, 327, and 434 GHz in the 4.5-30 K range. The observed transition fields were least-squares fit to give g = 1.91, D = -0.35 cm(-1), and B(4)(0) = -3.6 x 10(-7) cm(-1) for the S = (21)/(2) ground state. The effective energy barrier U(eff) is slightly lower than U estimated from D, which is consistent with the thermally assisted tunneling model. Magnetization hysteresis loops were observed for complexes 2a and 2c. Although 2a was oriented in a different manner as expected by strong magnetic field, both complexes show clear hysteresis loops with some steps on them, indicating that the effect of the magnetic cation on the magnetization relaxation of the anionic [Mn(12)]- complex is rather small. An 11% (57)Fe enriched complex 2b was studied by means of Mössbauer spectroscopy down to as low as 1.7 K. Slow paramagnetic relaxation broadening and magnetic hyperfine splitting were evident in the low-temperature spectra, indicating that the iron atoms feel a growing magnetic field owing to slow magnetization reversal in the [Mn(12)]- anions.

2.
Inorg Chem ; 40(13): 3191-9, 2001 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-11399192

RESUMO

Three novel silver(I) complexes with benzopyrene derivatives were synthesized and characterized in this paper. Treatment of AgClO(4)*H(2)O with 7-methylbenzo[a]pyrene (L(1)) afforded [Ag(2)(L(1))(toluene)(0.5)(ClO(4))(2)](n)() (1) which exhibits a 2-D sheet structure with double-stranded helical motifs. Reaction of AgCF(3)SO(3) with dibenzo[b,def ]chrysene (L(2)) gave rise to an unprecedented cocrystallization structure, ([Ag(2)(L(2))(CF(3)SO(3))(2)][Ag(2)(toluene)(2)(CF(3)SO(3))(2)])(n)() (2), formed by a 2-D neutral lamellar polymer and a 1-D neutral rodlike one. The ligand benzo[e]pyrene (L(3)) coordinated to silver(I) ions generating a closed triple-decker tetranuclear complex [Ag(4)(L(3))(4)(p-xylene)(ClO(4))(4)] (3) which can be regarded as a stacking polymer owing to existing intermolecular pi-pi stack interactions. The structural diversity of the silver(I) coordination polymers with polycyclic aromatic hydrocarbons is not only related to the stacking patterns of free polycyclic aromatic hydrocarbons in the crystalline state, but also the geometric shapes of the molecules for these free ligands. In addition, the coordination of solvents to metal ions plays a crucial role in the formation of the unprecedented coordination polymeric architectures. The ESR spectroscopic results, conductivity, and synthesis properties are also discussed.

7.
Inorg Chem ; 39(19): 4273-9, 2000 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-11196922

RESUMO

This paper presents novel and distinctive organosilver polymers with intriguing structure motifs, constructed from iodoacetonitrile (L1), 1-(isocyanidomethyl)-1H-benzotriazole (L2), 1,3-bis(dicyanomethylidene)indan (L3), and silver(I) salts, respectively. Treatment of L1 with AgClO4 generated [Ag(L1)(ClO4)]n (1), whose X-ray determination revealed a 2-D wavy sheet structure with square grids. Reaction of L2 with AgPF6 gave rise to a novel 2-D wavy interwoven network, ([Ag(L2)(PO2F2)0.5])n (2). The complex [Ag2(L3)2]n (3) obtained by reaction of AgClO4 with L3 can be regarded as unprecedented 3-D 5-fold interpenetrating nets with columnar aromatic stacks and indicates semiconductive behavior. The IR, ESR spectroscopic results, conductivities, and structural features of the complexes are discussed, respectively. The present findings may provide insight into the coordination versatility of silver(I) and polynitrile ligands and an inspiration for the self-assembly of novel supramolecular networks with multifunctional ligands. Crystal data: 1, C2H2AgINClO4, orthorhombic, Pca2(1) (No. 29), a = 14.503(1) A, b = 5.104(2) A, c = 10.2019(9) A, Z = 4; 2, C8H6AgN4PF4O, orthorhombic, Pnna (No. 52), a = 12.2705(3) A, b = 21.150(1) A, c = 10.040(1) A, Z = 8; 3, C30H10Ag2N8, triclinic, P1 (No. 2), a = 14.920(2) A, b = 11.896(2) A, c = 7.400(4) A, alpha = 86.55(2) degrees, beta = 80.87(2) degrees, gamma = 74.47(1) degrees, Z = 2.

8.
Inorg Chem ; 39(10): 2146-51, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12526526

RESUMO

This paper reports novel silver polymers, built with iodine--silver interactions, with interesting structural motifs. Four silver(I) coordination polymers of the aryl iodide derived ligands, triiodobenzoic acid (HL1), tris(4-iodophenyl)amine (L2), and 5,7-diiodo-8-hydroxyquinoline (HL3), have been synthesized and characterized by X-ray crystallography. Treatment of Ag(CH3COO) with HL1 yielded [Ag(L1)] (1), whose structural analysis revealed 2D layers of ladders connected through weak Ag...I interaction. Reactions of AgClO4 and L2 in benzene and nitrobenzene afforded, respectively, two different products, [Ag(L2)(H2O)]ClO4.C6H6(2) and [Ag(L2)(ClO4)](3). While the structure of 2 could be described as a 2D layer of square and octagons perpendicular to [100], complex 3 is formed by 2D layers of the same topology of 2 (8(2).4), alternating as ABAB. In contrast, complex 4, [Ag2(H2L3)(CF3SO3)3], obtained by reaction of Ag(CF3SO3) and HL3, was found to consist of a 2D layer based on columnar arrays AgH2L3-Ag(triflate). The solid-state FT-IR and 109Ag NMR spectra of theses complexes are discussed on the basis of their crystal structures.

9.
Inorg Chem ; 39(24): 5430-6, 2000 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-11154557

RESUMO

For the purpose of investigating the coordination behavior of the sterically congested alkenes and exploring the possibility of cofacial complexation in the polycyclic aromatic system for formation of extended polymeric networks, tetraphenylethylene (tphe) and 1,1,4,4-tetraphenyl-1,3-butadiene (tphb) have been studied with regard to their complexation with a silver(I) ion. The crystal structures of [Ag(tphe)(ClO4)(p-xylene)], [Ag2(tphe)(ClO4)2], [Ag4(tphe)(CF3SO3)4], [Ag2(tphb)(ClO4)2], and [Ag2(tphb)(CF3SO3)2], together with the metal-free ligands tphe and tphb, have been determined by single-crystal X-ray diffraction. The pi-electron-rich cleft in organic components is found to offer a potential site for complexation, which can be utilized to generate an interesting array of organometallic compounds with one- and two-dimensional frameworks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...