Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncol ; 32(1): 200758, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596304

RESUMO

Oncolytic viruses are engineered to selectively kill tumor cells and have demonstrated promising results in early-phase clinical trials. To further modulate the innate and adaptive immune system, we generated AZD4820, a vaccinia virus engineered to express interleukin-12 (IL-12), a potent cytokine involved in the activation of natural killer (NK) and T cells and the reprogramming of the tumor immune microenvironment. Testing in cultured human tumor cell lines demonstrated broad in vitro oncolytic activity and IL-12 transgene expression. A surrogate virus expressing murine IL-12 demonstrated antitumor activity in both MC38 and CT26 mouse syngeneic tumor models that responded poorly to immune checkpoint inhibition. In both models, AZD4820 significantly upregulated interferon-gamma (IFN-γ) relative to control mice treated with oncolytic vaccinia virus (VACV)-luciferase. In the CT26 study, 6 of 10 mice had a complete response after treatment with AZD4820 murine surrogate, whereas control VACV-luciferase-treated mice had 0 of 10 complete responders. AZD4820 treatment combined with anti-PD-L1 blocking antibody augmented tumor-specific T cell immunity relative to monotherapies. These findings suggest that vaccinia virus delivery of IL-12, combined with immune checkpoint blockade, elicits antitumor immunity in tumors that respond poorly to immune checkpoint inhibitors.

2.
Nat Commun ; 15(1): 493, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216554

RESUMO

Measles virus (MV) vaccine strains have shown significant preclinical antitumor activity against glioblastoma (GBM), the most lethal glioma histology. In this first in human trial (NCT00390299), a carcinoembryonic antigen-expressing oncolytic measles virus derivative (MV-CEA), was administered in recurrent GBM patients either at the resection cavity (Group A), or, intratumorally on day 1, followed by a second dose administered in the resection cavity after tumor resection on day 5 (Group B). A total of 22 patients received study treatment, 9 in Group A and 13 in Group B. Primary endpoint was safety and toxicity: treatment was well tolerated with no dose-limiting toxicity being observed up to the maximum feasible dose (2×107 TCID50). Median OS, a secondary endpoint, was 11.6 mo and one year survival was 45.5% comparing favorably with contemporary controls. Other secondary endpoints included assessment of viremia, MV replication and shedding, humoral and cellular immune response to the injected virus. A 22 interferon stimulated gene (ISG) diagonal linear discriminate analysis (DLDA) classification algorithm in a post-hoc analysis was found to be inversely (R = -0.6, p = 0.04) correlated with viral replication and tumor microenvironment remodeling including proinflammatory changes and CD8 + T cell infiltration in post treatment samples. This data supports that oncolytic MV derivatives warrant further clinical investigation and that an ISG-based DLDA algorithm can provide the basis for treatment personalization.


Assuntos
Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus do Sarampo/genética , Antígeno Carcinoembrionário/genética , Recidiva Local de Neoplasia/terapia , Vacina contra Sarampo , Microambiente Tumoral
3.
Ticks Tick Borne Dis ; 13(6): 102017, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35963188

RESUMO

As hematophagous parasites, many tick species are important vectors of medical and veterinary disease agents. Proteins found in tick saliva and midgut have been used with some success in immunizations of animal hosts against feeding ticks, and whole saliva has been used effectively in this capacity against Ixodes scapularis, the primary vector of tickborne pathogens in the United States. Tick saliva is a complex substance containing hundreds of proteins, and the identification of specific protective antigens is ongoing. We performed a series of experiments immunizing guinea pigs with extracts prepared from midgut or attachment cement collected from adult female I. scapularis followed by challenge with nymphs of the same species. Midgut extract did not induce protective immunity, while immunization with cement extract resulted in partial protection of hosts as evidenced by premature tick detachment and 34-41% reduction in tick engorgement weights. Proteomic characterization of I. scapularis cement was performed, demonstrating that the cement extract was compositionally different from tick saliva, and vitellogenin-like lipoproteins were the most abundant proteins in cement extract (>40%). Cement was also heavily enriched with lysozymes and defensins, including those originating from both the mammalian host as well as ticks. These results demonstrate that I. scapularis cement contains immunogenic components capable of stimulating host resistance against tick feeding. Because the cement is present at the tick-host interface for an extended period of time during the feeding process, these antigens present auspicious candidates for further evaluation and potential inclusion in an anti-tick vaccine.

4.
Vaccine ; 39(52): 7661-7668, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34862075

RESUMO

Guinea pigs exposed to multiple infestations with Ixodes scapularis ticks develop acquired resistance to ticks, which is also known as tick immunity. The I. scapularis salivary components that contribute to tick immunity are likely multifactorial. An anticoagulant that inhibits factor Xa, named Salp14, is present in tick saliva and is associated with partial tick immunity. A tick bite naturally releases tick saliva proteins into the vertebrate host for several days, which suggests that the mode of antigen delivery may influence the genesis of tick immunity. We therefore utilized Salp14 as a model antigen to examine tick immunity using mRNA lipid nanoparticles (LNPs), plasmid DNA, or recombinant protein platforms. salp14 containing mRNA-LNPs vaccination elicited erythema at the tick bite site after tick challenge that occurred earlier, and that was more pronounced, compared with DNA or protein immunizations. Humoral and cellular responses associated with tick immunity were directed towards a 25 amino acid region of Salp14 at the carboxy terminus of the protein, as determined by antibody responses and skin-testing assays. This study demonstrates that the model of antigen delivery, also known as the vaccine platform, can influence the genesis of tick immunity in guinea pigs. mRNA-LNPs may be useful in helping to elicit erythema at the tick bite site, one of the most important early hallmarks of acquired tick resistance. mRNA-LNPs containing tick genes is a useful platform for the development of vaccines that can potentially prevent selected tick-borne diseases.


Assuntos
Ixodes , Proteínas e Peptídeos Salivares/imunologia , Vacinas/imunologia , Animais , DNA , Cobaias , Lipossomos , Nanopartículas , RNA Mensageiro , Proteínas e Peptídeos Salivares/administração & dosagem
5.
Sci Transl Med ; 13(620): eabj9827, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34788080

RESUMO

Ixodes scapularis ticks transmit many pathogens that cause human disease, including Borrelia burgdorferi. Acquired resistance to I. scapularis due to repeated tick exposure has the potential to prevent tick-borne infectious diseases, and salivary proteins have been postulated to contribute to this process. We examined the ability of lipid nanoparticle­containing nucleoside-modified mRNAs encoding 19 I. scapularis salivary proteins (19ISP) to enhance the recognition of a tick bite and diminish I. scapularis engorgement on a host and thereby prevent B. burgdorferi infection. Guinea pigs were immunized with a 19ISP mRNA vaccine and subsequently challenged with I. scapularis. Animals administered 19ISP developed erythema at the bite site shortly after ticks began to attach, and these ticks fed poorly, marked by early detachment and decreased engorgement weights. 19ISP immunization also impeded B. burgdorferi transmission in the guinea pigs. The effective induction of local redness early after I. scapularis attachment and the inability of the ticks to take a normal blood meal suggest that 19ISP may be used either alone or in conjunction with traditional pathogen-based vaccines for the prevention of Lyme disease, and potentially other tick-borne infections.


Assuntos
Ixodes , Doença de Lyme , Animais , Cobaias , Lipossomos , Doença de Lyme/metabolismo , Doença de Lyme/prevenção & controle , Nanopartículas , RNA Mensageiro , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
6.
J Clin Invest ; 131(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196308

RESUMO

Clinical immunotherapy approaches are lacking efficacy in the treatment of glioblastoma (GBM). In this study, we sought to reverse local and systemic GBM-induced immunosuppression using the Helicobacter pylori neutrophil-activating protein (NAP), a potent TLR2 agonist, as an immunostimulatory transgene expressed in an oncolytic measles virus (MV) platform, retargeted to allow viral entry through the urokinase-type plasminogen activator receptor (uPAR). While single-agent murine anti-PD1 treatment or repeat in situ immunization with MV-s-NAP-uPA provided modest survival benefit in MV-resistant syngeneic GBM models, the combination treatment led to synergy with a cure rate of 80% in mice bearing intracranial GL261 tumors and 72% in mice with CT-2A tumors. Combination NAP-immunovirotherapy induced massive influx of lymphoid cells in mouse brain, with CD8+ T cell predominance; therapeutic efficacy was CD8+ T cell dependent. Inhibition of the IFN response pathway using the JAK1/JAK2 inhibitor ruxolitinib decreased PD-L1 expression on myeloid-derived suppressor cells in the brain and further potentiated the therapeutic effect of MV-s-NAP-uPA and anti-PD1. Our findings support the notion that MV strains armed with bacterial immunostimulatory antigens represent an effective strategy to overcome the limited efficacy of immune checkpoint inhibitor-based therapies in GBM, creating a promising translational strategy for this lethal brain tumor.


Assuntos
Antígenos de Bactérias/uso terapêutico , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Terapia Viral Oncolítica/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/uso terapêutico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/imunologia , Morte Celular/imunologia , Linhagem Celular Tumoral , Terapia Combinada , Citocinas/metabolismo , Efeito Citopatogênico Viral , Feminino , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Vírus do Sarampo/genética , Vírus do Sarampo/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/imunologia , Pesquisa Translacional Biomédica , Internalização do Vírus
7.
Parasite Immunol ; 43(5): e12808, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33187012

RESUMO

Acquired tick resistance is a phenomenon wherein the host elicits an immune response against tick salivary components upon repeated tick infestations. The immune responses, potentially directed against critical salivary components, thwart tick feeding, and the animal becomes resistant to subsequent tick infestations. The development of tick resistance is frequently observed when ticks feed on non-natural hosts, but not on natural hosts. The molecular mechanisms that lead to the development of tick resistance are not fully understood, and both host and tick factors are invoked in this phenomenon. Advances in molecular tools to address the host and the tick are beginning to reveal new insights into this phenomenon and to uncover a deeper understanding of the fundamental biology of tick-host interactions. This review will focus on the expanding understanding of acquired tick resistance and highlight the impact of this understanding on anti-tick vaccine development efforts.


Assuntos
Proteoma/fisiologia , Infestações por Carrapato/imunologia , Carrapatos/fisiologia , Animais , Modelos Animais de Doenças , Resistência à Doença , Interações Hospedeiro-Parasita/imunologia , Humanos
8.
Mol Ther Oncolytics ; 19: 136-148, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33145397

RESUMO

Measles virus (MV) Edmonston derivative strains are attractive vector platforms in vaccine development and oncolytic virotherapy. Helicobacter pylori heat shock protein A (HspA) is a bacterial heat shock chaperone with essential function as a Ni-ion scavenging protein. We generated and characterized the immunogenicity of an attenuated MV strain encoding the HspA transgene (MV-HspA). MV-HspA showed faster replication within 48 h of infection with >10-fold higher titers and faster accumulation of the MV proteins. It also demonstrated a superior tumor-killing effect in vitro against a variety of human solid tumor cell lines, including sarcoma, ovarian and breast cancer. Two intraperitoneal (i.p.) doses of 106 50% tissue culture infectious dose (TCID50) MV-HspA significantly improved survival in an ovarian cancer xenograft model: 63.5 days versus 27 days for the control group. The HspA transgene induced a humoral immune response in measles-permissive Ifnarko-CD46Ge transgenic mice. Eight of nine animals developed a long-term anti-HspA antibody response with titers of 1:400 to 1:12,800 without any negative impact on development of protective anti-MV immune memory. MV-HspA triggered an immunogenic cytopathic effect as measured by an HMGB1 assay. The absence of significant elevation of PD-L1 expression indicated that vector-encoded HspA could act as an immunomodulator on the immune check point axis. These data demonstrate that MV-HspA is a potent oncolytic agent and vaccine candidate for clinical translation in cancer treatment and immunoprophylaxis against H. pylori.

9.
Ticks Tick Borne Dis ; 11(6): 101529, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32993942

RESUMO

Ticks deposit salivary proteins into the skin during a bite to mediate acquisition of a blood meal. Acquired resistance to tick bites has been demonstrated to prevent Borrelia burgdorferi sensu lato (s.l.) transmission. However, the mechanism of resistance, as well as the protective antigens, have remained elusive. To address these unknowns, we utilized a guinea pig model of tick resistance and a mouse model of permissiveness. Guinea pigs developed immunity after multiple Ixodes scapularis tick infestations, characterized by rapid tick detachment and impaired feeding. In comparison, mice tolerated at least 6 infestations with no significant impact on feeding. We analyzed the bite sites by RNA-sequencing and histology, identifying several inflammatory pathways in tick immune animals, such as FcεRI signaling and complement activation, and activation of coagulation pathways that could impair local blood flow. Together, these results identify important pathways altered during tick rejection and potential tick proteins that could serve as vaccine candidates.


Assuntos
Cobaias , Ixodes/fisiologia , Camundongos , Infestações por Carrapato/imunologia , Animais , Modelos Animais de Doenças , Feminino , Ixodes/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia
10.
Nat Rev Microbiol ; 18(10): 587-600, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651470

RESUMO

Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to vertebrate hosts by Ixodes spp. ticks. The spirochaete relies heavily on its arthropod host for basic metabolic functions and has developed complex interactions with ticks to successfully colonize, persist and, at the optimal time, exit the tick. For example, proteins shield spirochaetes from immune factors in the bloodmeal and facilitate the transition between vertebrate and arthropod environments. On infection, B. burgdorferi induces selected tick proteins that modulate the vector gut microbiota towards an environment that favours colonization by the spirochaete. Additionally, the recent sequencing of the Ixodes scapularis genome and characterization of tick immune defence pathways, such as the JAK-STAT, immune deficiency and cross-species interferon-γ pathways, have advanced our understanding of factors that are important for B. burgdorferi persistence in the tick. In this Review, we summarize interactions between B. burgdorferi and I. scapularis during infection, as well as interactions with tick gut and salivary gland proteins important for establishing infection and transmission to the vertebrate host.


Assuntos
Vetores Aracnídeos/genética , Proteínas de Artrópodes/genética , Borrelia burgdorferi/genética , Interações Hospedeiro-Patógeno/genética , Ixodes/genética , Doença de Lyme/transmissão , Animais , Vetores Aracnídeos/metabolismo , Vetores Aracnídeos/microbiologia , Proteínas de Artrópodes/metabolismo , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/patogenicidade , Regulação da Expressão Gênica , Genoma , Humanos , Intestinos/microbiologia , Intestinos/patologia , Ixodes/metabolismo , Ixodes/microbiologia , Doença de Lyme/microbiologia , Doença de Lyme/patologia , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/microbiologia , Glândulas Salivares/patologia , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Transdução de Sinais
11.
Ticks Tick Borne Dis ; 11(3): 101369, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31924502

RESUMO

Ticks and tick-borne diseases are on the rise world-wide and vaccines to prevent transmission of tick-borne diseases is an urgent public health need. Tick transmission of pathogens to the mammalian host occurs during tick feeding. Therefore, it is reasoned that vaccine targeting of tick proteins essential for feeding would thwart tick feeding and consequently prevent pathogen transmission. The phenomenon of acquired tick-immunity, wherein, repeated tick infestations of non-natural hosts results in the development of host immune responses detrimental to tick feeding has served as a robust paradigm in the pursuit of tick salivary antigens that may be vaccine targeted. While several salivary antigens have been identified, immunity elicited against these antigens have only provided modest tick rejection. This has raised the possibility that acquired tick-immunity is directed against tick components other than tick salivary antigens. Using Ixodes scapularis, the blacklegged tick, that vectors several human pathogens, we demonstrate that immunity directed against tick salivary glycoproteins is indeed sufficient to recapitulate the phenomenon of tick-resistance. These observations emphasize the utility of tick salivary glycoproteins as viable vaccine targets to thwart tick feeding and direct our search for anti-tick vaccine candidates.


Assuntos
Proteínas de Artrópodes/química , Glicoproteínas/química , Ixodes/química , Saliva/química , Animais , Feminino , Cobaias , Ixodes/crescimento & desenvolvimento , Ninfa/química , Ninfa/crescimento & desenvolvimento , Coelhos
12.
Oncotarget ; 10(16): 1544-1545, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30899421
13.
Virus Res ; 263: 145-150, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30684519

RESUMO

Measles virus (MV), a paramyxovirus, is one of the most contagious human pathogens and is responsible for thousands of deaths annually. Wild-type MV evolved to counter the innate immune system by avoiding both type I interferon (IFN) induction and inhibiting IFN signaling through the JAK/STAT pathway. However, virus replication is significantly inhibited in IFN-pretreated cells. Similarly, MV vaccine derived strains are inhibited by IFN pretreatment, but vaccine strains also induce IFN. Despite the significant progress in understanding the interactions between MV and the IFN pathway, the IFN stimulated genes (ISGs) that inhibit MV replication remain largely unknown. The aim of this study is to identify specific ISGs that mediate restriction of MV. In this study, we report that Radical S-adenosyl methionine domain containing 2 (RSAD2) restricts MV infection at the stage of virus release in infected 293T cells. Furthermore, attenuated MV strains are currently being developed as a novel treatment for solid and hematological malignancies. Therefore, we tested the impact of RSAD2 expression in an oncolytic virotherapy context using a MV permissive ovarian cancer line (SR-B2). As measured in 293T cells, MV release was also impaired in SR-B2 cells transduced to express RSAD2 in vitro. Additionally, oncolytic MV therapeutic efficacy was impaired in SR-B2 cells transduced to express RSAD2 in vivo. Overall, we identify RSAD2 as a novel restriction factor for MV by inhibiting the release of virus. These results provide important information regarding the interaction between MV and the innate immune system, as well as implications for the design of oncolytic MV platforms.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus do Sarampo/imunologia , Vírus do Sarampo/fisiologia , Proteínas/metabolismo , Liberação de Vírus , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/virologia , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH
14.
J Natl Cancer Inst ; 110(10): 1123-1132, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788332

RESUMO

Background: Attenuated measles virus (MV) strains are promising agents currently being tested against solid tumors or hematologic malignancies in ongoing phase I and II clinical trials; factors determining oncolytic virotherapy success remain poorly understood, however. Methods: We performed RNA sequencing and gene set enrichment analysis to identify pathways differentially activated in MV-resistant (n = 3) and -permissive (n = 2) tumors derived from resected human glioblastoma (GBM) specimens and propagated as xenografts (PDX). Using a unique gene signature we identified, we generated a diagonal linear discriminant analysis (DLDA) classification algorithm to predict MV responders and nonresponders, which was validated in additional randomly selected GBM and ovarian cancer PDX and 10 GBM patients treated with MV in a phase I trial. GBM PDX lines were also treated with the US Food and Drug Administration-approved JAK inhibitor, ruxolitinib, for 48 hours prior to MV infection and virus production, STAT1/3 signaling and interferon stimulated gene expression was assessed. All statistical tests were two-sided. Results: Constitutive interferon pathway activation, as reflected in the DLDA algorithm, was identified as the key determinant for MV replication, independent of virus receptor expression, in MV-permissive and -resistant GBM PDXs. Using these lines as the training data for the DLDA algorithm, we confirmed the accuracy of our algorithm in predicting MV response in randomly selected GBM PDX ovarian cancer PDXs. Using the DLDA prediction algorithm, we demonstrate that virus replication in patient tumors is inversely correlated with expression of this resistance gene signature (ρ = -0.717, P = .03). In vitro inhibition of the interferon response pathway with the JAK inhibitor ruxolitinib was able to overcome resistance and increase virus production (1000-fold, P = .03) in GBM PDX lines. Conclusions: These findings document a key mechanism of tumor resistance to oncolytic MV therapy and describe for the first time the development of a prediction algorithm to preselect for oncolytic treatment or combinatorial strategies.


Assuntos
Interferons/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Terapia Viral Oncolítica , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Vírus do Sarampo/genética , Camundongos , Neoplasias/patologia , Vírus Oncolíticos/genética , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Neuro Oncol ; 19(4): 493-502, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663389

RESUMO

Background: Glioblastoma (GBM) is the most common primary malignant brain tumor and has a dismal prognosis. Measles virus (MV) therapy of GBM is a promising strategy due to preclinical efficacy, excellent clinical safety, and its ability to evoke antitumor pro-inflammatory responses. We hypothesized that combining anti- programmed cell death protein 1 (anti-PD-1) blockade and MV therapy can overcome immunosuppression and enhance immune effector cell responses against GBM, thus improving therapeutic outcome. Methods: In vitro assays of MV infection of glioma cells and infected glioma cells with mouse microglia ± aPD-1 blockade were established to assess damage associated molecular pattern (DAMP) molecule production, migration, and pro-inflammatory effects. C57BL/6 or athymic mice bearing syngeneic orthotopic GL261 gliomas were treated with MV, aPD-1, and combination treatment. T2* weighted immune cell-specific MRI and fluorescence activated cell sorting (FACS) analysis of treated mouse brains was used to examine adaptive immune responses following therapy. Results: In vitro, MV infection induced human GBM cell secretion of DAMP (high-mobility group protein 1, heat shock protein 90) and upregulated programmed cell death ligand 1 (PD-L1). MV infection of GL261 murine glioma cells resulted in a pro-inflammatory response and increased migration of BV2 microglia. In vivo, MV+aPD-1 therapy synergistically enhanced survival of C57BL/6 mice bearing syngeneic orthotopic GL261 gliomas. MRI showed increased inflammatory cell influx into the brains of mice treated with MV+aPD-1; FACS analysis confirmed increased T-cell influx predominantly consisting of activated CD8+ T cells. Conclusions: This report demonstrates that oncolytic measles virotherapy in combination with aPD-1 blockade significantly improves survival outcome in a syngeneic GBM model and supports the potential of clinical/translational strategies combining MV with αPD-1 therapy in GBM treatment.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imunoterapia , Vírus do Sarampo/fisiologia , Terapia Viral Oncolítica , Receptor de Morte Celular Programada 1/imunologia , Animais , Anticorpos/administração & dosagem , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/veterinária , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/virologia , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...