Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 26(3): 240-250, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801798

RESUMO

Transfer RNA (tRNA) is an adaptor molecule indispensable for assigning amino acids to codons on mRNA during protein synthesis. 2-thiouridine (s2U) derivatives in the anticodons (position 34) of tRNAs for glutamate, glutamine, and lysine are post-transcriptional modifications essential for precise and efficient codon recognition in all organisms. s2U34 is introduced either by (i) bacterial MnmA/eukaryote mitochondrial Mtu1 or (ii) eukaryote cytosolic Ncs6/archaeal NcsA, and the latter enzymes possess iron-sulfur (Fe-S) cluster. Here, we report the identification of novel-type MnmA homologs containing three conserved Cys residues, which could support Fe-S cluster binding and catalysis, in a broad range of bacteria, including thermophiles, Cyanobacteria, Mycobacteria, Actinomyces, Clostridium, and Helicobacter Using EPR spectroscopy, we revealed that Thermus thermophilus MnmA (TtMnmA) contains an oxygen-sensitive [4Fe-4S]-type cluster. Efficient in vitro formation of s2U34 in tRNALys and tRNAGln by holo-TtMnmA occurred only under anaerobic conditions. Mutational analysis of TtMnmA suggested that the Fe-S cluster is coordinated by the three conserved Cys residues (Cys105, Cys108, and Cys200), and is essential for its activity. Evolutionary scenarios for the sulfurtransferases, including the Fe-S cluster containing Ncs6/NcsA s2U thiouridylases and several distantly related sulfurtransferases, are proposed.


Assuntos
Anticódon/genética , Proteínas de Escherichia coli/genética , RNA de Transferência/genética , Sulfurtransferases/genética , Códon/genética , Cianobactérias/genética , Escherichia coli/genética , Ácido Glutâmico/genética , Glutamina/genética , Ferro/metabolismo , Lisina/genética , Mycobacterium/genética , Enxofre/metabolismo , Sulfurtransferases/química , Tiouridina/análogos & derivados , Tiouridina/metabolismo
2.
Sci Rep ; 8(1): 15894, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367120

RESUMO

Long interspersed element-1 (LINE-1, L1) is a mobile genetic element comprising about 17% of the human genome. L1 utilizes an endonuclease to insert L1 cDNA into the target genomic DNA, which induces double-strand DNA breaks in the human genome and activates the DNA damage signaling pathway, resulting in the recruitment of DNA-repair proteins. This may facilitate or protect L1 integration into the human genome. Therefore, the host DNA repair machinery has pivotal roles in L1 mobility. In this study, we have, for the first time, demonstrated that the DNA repair protein, Rad18, restricts L1 mobility. Notably, overexpression of Rad18 strongly suppressed L1 retrotransposition as well as L1-mediated Alu retrotransposition. In contrast, L1 retrotransposition was enhanced in Rad18-deficient or knockdown cells. Furthermore, the Rad6 (E2 ubiquitin-conjugated enzyme)-binding domain, but not the Polη-binding domain, was required for the inhibition of L1 retrotransposition, suggesting that the E3 ubiquitin ligase activity of Rad18 is important in regulating L1 mobility. Accordingly, wild-type, but not the mutant Rad18-lacking Rad6-binding domain, bound with L1 ORF1p and sequestered with L1 ORF1p into the Rad18-nuclear foci. Altogether, Rad18 restricts L1 and Alu retrotransposition as a guardian of the human genome against endogenous retroelements.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Células HCT116 , Células HEK293 , Humanos , Plasmídeos/genética , Plasmídeos/metabolismo , Domínios Proteicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
3.
Nucleic Acids Res ; 46(16): 8454-8470, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30085096

RESUMO

Long interspersed element-1 (LINE-1, L1) composes ∼17% of the human genome. However, genetic interactions between L1 and human immunodeficiency virus type 1 (HIV-1) remain poorly understood. In this study, we found that HIV-1 suppresses L1 retrotransposition. Notably, HIV-1 Vpr strongly inhibited retrotransposition without inhibiting L1 promoter activity. Since Vpr is known to regulate host cell cycle, we examined the possibility whether Vpr suppresses L1 retrotransposition in a cell cycle dependent manner. We showed that the inhibitory effect of a mutant Vpr (H71R), which is unable to arrest the cell cycle, was significantly relieved compared with that of wild-type Vpr, suggesting that Vpr suppresses L1 mobility in a cell cycle dependent manner. Furthermore, a host cell cycle regulator p21Waf1 strongly suppressed L1 retrotransposition. The N-terminal kinase inhibitory domain (KID) of p21 was required for this inhibitory effect. Another KID-containing host cell cycle regulator p27Kip1 also strongly suppressed L1 retrotransposition. We showed that Vpr and p21 coimmunoprecipitated with L1 ORF2p and they suppressed the L1 reverse transcriptase activity in LEAP assay, suggesting that Vpr and p21 inhibit ORF2p-mediated reverse transcription. Altogether, our results suggest that viral and host cell cycle regulatory machinery limit L1 mobility in cultured cells.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/fisiologia , HIV-1/fisiologia , Elementos Nucleotídeos Longos e Dispersos/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Ciclo Celular , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Endonucleases/metabolismo , Genes Reporter , Genes vpr , HIV-1/genética , Humanos , Domínios Proteicos , Proteínas/metabolismo , Interferência de RNA , DNA Polimerase Dirigida por RNA/metabolismo , Transcrição Gênica , Vírion/metabolismo
4.
Biochem Biophys Res Commun ; 441(3): 607-11, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24183723

RESUMO

Host RNA helicase has been involved in human immunodeficiency virus type 1 (HIV-1) replication, since HIV-1 does not encode an RNA helicase. Indeed, DDX1 and DDX3 DEAD-box RNA helicases are known to be required for efficient HIV-1 Rev-dependent RNA export. However, it remains unclear whether DDX RNA helicases modulate the HIV-1 Tat function. In this study, we demonstrate, for the first time, that DDX3 is required for the HIV-1 Tat function. Notably, DDX3 colocalized and interacted with HIV-1 Tat in cytoplasmic foci. Indeed, DDX3 localized in the cytoplasmic foci P-bodies or stress granules under stress condition after the treatment with arsenite. Importantly, only DDX3 enhanced the Tat function, while various distinct DEAD-box RNA helicases including DDX1, DDX3, DDX5, DDX17, DDX21, and DDX56, stimulated the HIV-1 Rev-dependent RNA export function, indicating a specific role of DDX3 in Tat function. Indeed, the ATPase-dependent RNA helicase activity of DDX3 seemed to be required for the Tat function as well as the colocalization with Tat. Furthermore, the combination of DDX3 with other distinct DDX RNA helicases cooperated to stimulate the Rev but not Tat function. Thus, DDX3 seems to interact with the HIV-1 Tat and facilitate the Tat function.


Assuntos
RNA Helicases DEAD-box/metabolismo , HIV-1/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Citoplasma/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
5.
Biochem Biophys Res Commun ; 434(4): 803-8, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23608157

RESUMO

RNA helicase plays an important role in host mRNA and viral mRNA transcription, transport, and translation. Many viruses utilize RNA helicases in their life cycle, while human immunodeficiency virus type 1 (HIV-1) does not encode an RNA helicase. Thus, host RNA helicase has been involved in HIV-1 replication. Indeed, DDX1 and DDX3 DEAD-box RNA helicases are known to be required for efficient HIV-1 Rev-dependent RNA export. However, it remains unclear whether distinct DDX RNA helicases cross-talk and cooperate to modulate the HIV-1 Rev function. In this study, we noticed that distinct DDX RNA helicases, including DDX1, DDX3, DDX5, DDX17, DDX21, DDX56, except DDX6, bound to the Rev protein and they colocalized with Rev in nucleolus or nucleus. In this context, these DEAD-box RNA helicases except DDX6 markedly enhanced the HIV-1 Rev-dependent RNA export. Furthermore, DDX3 interacted with DDX5 and synergistically enhanced the Rev function. As well, combination of other distinct DDX RNA helicases cooperated to stimulate the Rev function. Altogether, these results suggest that distinct DDX DEAD-box RNA helicases cooperate to modulate the HIV-1 Rev function.


Assuntos
RNA Helicases DEAD-box/metabolismo , HIV-1/metabolismo , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Western Blotting , Nucléolo Celular/metabolismo , Nucléolo Celular/virologia , RNA Helicases DEAD-box/genética , Células HEK293 , HIV-1/genética , Humanos , Luciferases/genética , Luciferases/metabolismo , Microscopia Confocal , Ligação Proteica , Transporte de RNA , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética
6.
Biochem Biophys Res Commun ; 430(2): 592-7, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23219818

RESUMO

PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.


Assuntos
Hepacivirus/fisiologia , Proteínas Nucleares/fisiologia , RNA Viral/biossíntese , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Replicação Viral , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica , Proteína SMARCB1 , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
7.
J Virol ; 85(14): 6882-92, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21543503

RESUMO

The microRNA miR-122 and DDX6/Rck/p54, a microRNA effector, have been implicated in hepatitis C virus (HCV) replication. In this study, we demonstrated for the first time that HCV-JFH1 infection disrupted processing (P)-body formation of the microRNA effectors DDX6, Lsm1, Xrn1, PATL1, and Ago2, but not the decapping enzyme DCP2, and dynamically redistributed these microRNA effectors to the HCV production factory around lipid droplets in HuH-7-derived RSc cells. Notably, HCV-JFH1 infection also redistributed the stress granule components GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1), ataxin-2 (ATX2), and poly(A)-binding protein 1 (PABP1) to the HCV production factory. In this regard, we found that the P-body formation of DDX6 began to be disrupted at 36 h postinfection. Consistently, G3BP1 transiently formed stress granules at 36 h postinfection. We then observed the ringlike formation of DDX6 or G3BP1 and colocalization with HCV core after 48 h postinfection, suggesting that the disruption of P-body formation and the hijacking of P-body and stress granule components occur at a late step of HCV infection. Furthermore, HCV infection could suppress stress granule formation in response to heat shock or treatment with arsenite. Importantly, we demonstrate that the accumulation of HCV RNA was significantly suppressed in DDX6, Lsm1, ATX2, and PABP1 knockdown cells after the inoculation of HCV-JFH1, suggesting that the P-body and the stress granule components are required for the HCV life cycle. Altogether, HCV seems to hijack the P-body and the stress granule components for HCV replication.


Assuntos
Grânulos Citoplasmáticos/fisiologia , Hepacivirus/fisiologia , Metabolismo dos Lipídeos , Sequência de Bases , Western Blotting , Linhagem Celular , Primers do DNA , Hepacivirus/genética , Humanos , Microscopia de Fluorescência , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Replicação Viral/fisiologia
8.
PLoS One ; 6(1): e14517, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21264300

RESUMO

BACKGROUND: Recently, lipid droplets have been found to be involved in an important cytoplasmic organelle for hepatitis C virus (HCV) production. However, the mechanisms of HCV assembly, budding, and release remain poorly understood. Retroviruses and some other enveloped viruses require an endosomal sorting complex required for transport (ESCRT) components and their associated proteins for their budding process. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether or not the ESCRT system is needed for HCV production, we examined the infectivity of HCV or the Core levels in culture supernatants as well as HCV RNA levels in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, expressing short hairpin RNA or siRNA targeted to tumor susceptibility gene 101 (TSG101), apoptosis-linked gene 2 interacting protein X (Alix), Vps4B, charged multivesicular body protein 4b (CHMP4b), or Brox, all of which are components of the ESCRT system. We found that the infectivity of HCV in the supernatants was significantly suppressed in these knockdown cells. Consequently, the release of the HCV Core into the culture supernatants was significantly suppressed in these knockdown cells after HCV-JFH1 infection, while the intracellular infectivity and the RNA replication of HCV-JFH1 were not significantly affected. Furthermore, the HCV Core mostly colocalized with CHMP4b, a component of ESCRT-III. In this context, HCV Core could bind to CHMP4b. Nevertheless, we failed to find the conserved viral late domain motif, which is required for interaction with the ESCRT component, in the HCV-JFH1 Core, suggesting that HCV Core has a novel motif required for HCV production. CONCLUSIONS/SIGNIFICANCE: These results suggest that the ESCRT system is required for infectious HCV production.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Hepacivirus/fisiologia , Hepatite C/virologia , Replicação Viral , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Hepatite C/metabolismo , Humanos
9.
Virus Res ; 146(1-2): 41-50, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19720094

RESUMO

Persistent hepatitis C virus (HCV) infection causes chronic liver diseases and is a serious global health problem. Cell culture-based persistent HCV RNA replication systems and infectious HCV production systems are widely used in HCV research. However, persistent HCV production systems have been developed only for HuH-7 hepatoma cells. Here we found a new human hepatoma cell line, Li23, that enables persistent HCV production and anti-HCV reagent assay. Li23's cDNA expression profile differed from HuH-7's, although the two cells had similar liver-specific expression profiles. We used HCV RNA with a specific combination of adaptive mutations to develop an HCV replicon system and genome-length HCV RNA replicating systems including a reporter assay system. Finally, Li23-derived cells persistently produced infectious virus of an HCV strain. Li23-derived cells are potentially useful for understanding the HCV life cycle and for finding antiviral targets.


Assuntos
Técnicas de Cultura de Células/métodos , Hepacivirus/crescimento & desenvolvimento , Hepatócitos/virologia , Linhagem Celular Tumoral , Hepacivirus/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade
10.
Hepatology ; 50(3): 678-88, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19492433

RESUMO

UNLABELLED: Recently, we reported that beta-carotene, vitamin D(2), and linoleic acid inhibited hepatitis C virus (HCV) RNA replication in hepatoma cells. Interestingly, in the course of the study, we found that the antioxidant vitamin E negated the anti-HCV activities of these nutrients. These results suggest that the oxidative stress caused by the three nutrients is involved in their anti-HCV activities. However, the molecular mechanism by which oxidative stress induces anti-HCV status remains unknown. Oxidative stress is also known to activate extracellular signal-regulated kinase (ERK). Therefore, we hypothesized that oxidative stress induces anti-HCV status via the mitogen activated protein kinase (MAPK)/ERK kinase (MEK)-ERK1/2 signaling pathway. In this study, we found that the MEK1/2-specific inhibitor U0126 abolished the anti-HCV activities of the three nutrients in a dose-dependent manner. Moreover, U0126 significantly attenuated the anti-HCV activities of polyunsaturated fatty acids, interferon-gamma, and cyclosporine A, but not statins. We further demonstrated that, with the exception of the statins, all of these anti-HCV nutrients and reagents actually induced activation of the MEK-ERK1/2 signaling pathway, which was inhibited or reduced by treatment not only with U0126 but also with vitamin E. We also demonstrated that phosphorylation of ERK1/2 by cyclosporine A was attenuated with N-acetylcysteine treatment and led to the negation of inhibition of HCV RNA replication. We propose that a cellular process that follows ERK1/2 phosphorylation and is specific to oxidative stimulation might lead to down-regulation of HCV RNA replication. CONCLUSION: Our results demonstrate the involvement of the MEK-ERK1/2 signaling pathway in the anti-HCV status induced by oxidative stress in a broad range of anti-HCV reagents. This intracellular modulation is expected to be a therapeutic target for the suppression of HCV RNA replication.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hepacivirus/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/fisiologia , Butadienos/farmacologia , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Hepacivirus/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Ácido Linoleico/farmacologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Nitrilas/farmacologia , RNA Viral/metabolismo , Transdução de Sinais , Vitamina E/farmacologia
11.
J Virol ; 83(5): 2338-48, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19109388

RESUMO

Arsenic trioxide (ATO), a therapeutic reagent used for the treatment of acute promyelocytic leukemia, has recently been reported to increase human immunodeficiency virus type 1 infectivity. However, in this study, we have demonstrated that replication of genome-length hepatitis C virus (HCV) RNA (O strain of genotype 1b) was notably inhibited by ATO at submicromolar concentrations without cell toxicity. RNA replication of HCV-JFH1 (genotype 2a) and the release of core protein into the culture supernatants were also inhibited by ATO after the HCV infection. To clarify the mechanism of the anti-HCV activity of ATO, we examined whether or not PML is associated with this anti-HCV activity, since PML is known to be a target of ATO. Interestingly, we observed the cytoplasmic translocation of PML after treatment with ATO. However, ATO still inhibited the HCV RNA replication even in the PML knockdown cells, suggesting that PML is dispensable for the anti-HCV activity of ATO. In contrast, we found that N-acetyl-cysteine, an antioxidant and glutathione precursor, completely and partially eliminated the anti-HCV activity of ATO after 24 h and 72 h of treatment, respectively. In this context, it is worth noting that we found an elevation of intracellular superoxide anion radical, but not hydrogen peroxide, and the depletion of intracellular glutathione in the ATO-treated cells. Taken together, these findings suggest that ATO inhibits the HCV RNA replication through modulation of the glutathione redox system and oxidative stress.


Assuntos
Arsenicais/farmacologia , Glutationa/metabolismo , Hepacivirus/efeitos dos fármacos , Estresse Oxidativo , Óxidos/farmacologia , Replicação Viral/efeitos dos fármacos , Trióxido de Arsênio , Linhagem Celular , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Oxirredução , RNA Viral/efeitos dos fármacos , Superóxidos/metabolismo
12.
J Virol ; 82(19): 9639-46, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18667510

RESUMO

Cellular responses to DNA damage are crucial for maintaining genome integrity, virus infection, and preventing the development of cancer. Hepatitis C virus (HCV) infection and the expression of the HCV nonstructural protein NS3 and core protein have been proposed as factors involved in the induction of double-stranded DNA breaks and enhancement of the mutation frequency of cellular genes. Since DNA damage sensors, such as the ataxia-telangiectasia mutated kinase (ATM), ATM- and Rad3-related kinase (ATR), poly(ADP-ribose) polymerase 1 (PARP-1), and checkpoint kinase 2 (Chk2), play central roles in the response to genotoxic stress, we hypothesized that these sensors might affect HCV replication. To test this hypothesis, we examined the level of HCV RNA in HuH-7-derived cells stably expressing short hairpin RNA targeted to ATM, ATR, PARP-1, or Chk2. Consequently, we found that replication of both genome-length HCV RNA (HCV-O, genotype 1b) and the subgenomic replicon RNA were notably suppressed in ATM- or Chk2-knockdown cells. In addition, the RNA replication of HCV-JFH1 (genotype 2a) and the release of core protein into the culture supernatants were suppressed in these knockdown cells after inoculation of the cell culture-generated HCV. Consistent with these observations, ATM kinase inhibitor could suppress the HCV RNA replication. Furthermore, we observed that HCV NS3-NS4A interacted with ATM and that HCV NS5B interacted with both ATM and Chk2. Taken together, these results suggest that the ATM signaling pathway is critical for HCV RNA replication and may represent a novel target for the clinical treatment of patients with chronic hepatitis C.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Hepacivirus/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Viral , Proteínas Supressoras de Tumor/metabolismo , Replicação Viral , Proteínas Mutadas de Ataxia Telangiectasia , Quinase do Ponto de Checagem 2 , Replicação do DNA , Genótipo , Humanos , Lentivirus/genética , Mutação , Poli(ADP-Ribose) Polimerases/metabolismo , Interferência de RNA , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo
13.
Biosci Biotechnol Biochem ; 72(2): 485-91, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18256506

RESUMO

A Japanese cypress (Chamaecyparis obtusa) pollen allergen, Cha o 1, is one of the major allergens that cause allergic pollinosis in Japan. Although it has been found that Cha o 1 is glycosylated and that the amino acid sequence is highly homologous with that of Japanese cedar pollen allergen (Cry j 1), the structure of N-glycans linked to Cha o 1 remains to be determined. In this study, therefore, we analyzed the structures of the N-glycans of Cha o1. The N-glycans were liberated by hydrazinolysis from purified Cha o 1, and the resulting sugar chains were N-acetylated and pyridylaminated. The structures of pyridylaminated N-glycans were analyzed by a combination of exoglycosidase digestion, two dimensional (2D-) sugar chain mapping, and electrospray ionization mass spectrometry analysis. Structural analysis indicated that the major N-glycan structure of Cha o1 is GlcNAc2Man3Xyl1Fuc1GlcNAc2 (89%), and that high-mannose type structures (Man9GlcNAc2, Man7GlcNAc2) occur as minor components (11%).


Assuntos
Cupressus/imunologia , Proteínas de Plantas/química , Configuração de Carboidratos , Sequência de Carboidratos , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Glicosilação , Isomerismo , Dados de Sequência Molecular , Proteínas de Plantas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray
14.
J Virol ; 81(24): 13922-6, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17855521

RESUMO

DDX3, a DEAD-box RNA helicase, binds to the hepatitis C virus (HCV) core protein. However, the role(s) of DDX3 in HCV replication is still not understood. Here we demonstrate that the accumulation of both genome-length HCV RNA (HCV-O, genotype 1b) and its replicon RNA were significantly suppressed in HuH-7-derived cells expressing short hairpin RNA targeted to DDX3 by lentivirus vector transduction. As well, RNA replication of JFH1 (genotype 2a) and release of the core into the culture supernatants were suppressed in DDX3 knockdown cells after inoculation of the cell culture-generated HCVcc. Thus, DDX3 is required for HCV RNA replication.


Assuntos
RNA Helicases DEAD-box/metabolismo , Hepacivirus/fisiologia , RNA Viral/metabolismo , Replicação Viral , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Genoma Viral , Hepacivirus/genética , Humanos , Replicon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...