Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(1): 231695, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38204797

RESUMO

A morphological trait can have multiple functions shaped by varying selective forces. Bare parts in birds, such as wattles, casques and combs, are known to function in both signalling and thermoregulation. Studies have demonstrated such structures are targets of sexual selection via female choice in several species of Galliformes (junglefowl, turkeys and grouse), though other studies have shown some role in thermoregulation (guineafowl). Here, we tested fundamental hypotheses regarding the evolution and maintenance of bare parts in Galliformes. Using a phylogeny that included nearly 90% of species in the order, we evaluated the role of both sexual and natural selection in shaping the function of bare parts across different clades. We found a combination of both environmental and putative sexually selected traits strongly predicted the variation of bare parts for both males and females across Galliformes. When the analysis is restricted to the largest family, Phasianidae (pheasants, junglefowl and allies), sexually selected traits were the primary predictors of bare parts. Our results suggest that bare parts are important for both thermoregulation and sexual signalling across Galliformes but are primarily under strong sexual selection within the Phasianidae.

2.
Syst Biol ; 72(1): 161-178, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36130303

RESUMO

Some phylogenetic problems remain unresolved even when large amounts of sequence data are analyzed and methods that accommodate processes such as incomplete lineage sorting are employed. In addition to investigating biological sources of phylogenetic incongruence, it is also important to reduce noise in the phylogenomic dataset by using appropriate filtering approach that addresses gene tree estimation errors. We present the results of a case study in manakins, focusing on the very difficult clade comprising the genera Antilophia and Chiroxiphia. Previous studies suggest that Antilophia is nested within Chiroxiphia, though relationships among Antilophia+Chiroxiphia species have been highly unstable. We extracted more than 11,000 loci (ultra-conserved elements and introns) from whole genomes and conducted analyses using concatenation and multispecies coalescent methods. Topologies resulting from analyses using all loci differed depending on the data type and analytical method, with 2 clades (Antilophia+Chiroxiphia and Manacus+Pipra+Machaeopterus) in the manakin tree showing incongruent results. We hypothesized that gene trees that conflicted with a long coalescent branch (e.g., the branch uniting Antilophia+Chiroxiphia) might be enriched for cases of gene tree estimation error, so we conducted analyses that either constrained those gene trees to include monophyly of Antilophia+Chiroxiphia or excluded these loci. While constraining trees reduced some incongruence, excluding the trees led to completely congruent species trees, regardless of the data type or model of sequence evolution used. We found that a suite of gene metrics (most importantly the number of informative sites and likelihood of intralocus recombination) collectively explained the loci that resulted in non-monophyly of Antilophia+Chiroxiphia. We also found evidence for introgression that may have contributed to the discordant topologies we observe in Antilophia+Chiroxiphia and led to deviations from expectations given the multispecies coalescent model. Our study highlights the importance of identifying factors that can obscure phylogenetic signal when dealing with recalcitrant phylogenetic problems, such as gene tree estimation error, incomplete lineage sorting, and reticulation events. [Birds; c-gene; data type; gene estimation error; model fit; multispecies coalescent; phylogenomics; reticulation].


Assuntos
Passeriformes , Animais , Filogenia , Íntrons , Probabilidade
3.
mBio ; 11(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911491

RESUMO

Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome.IMPORTANCE In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes.


Assuntos
Evolução Biológica , Aves , Quirópteros , Microbioma Gastrointestinal , Vertebrados , Animais , Biologia Computacional/métodos , Metagenoma , Metagenômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...