Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 10(1): 143-154, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292608

RESUMO

The essential functions that cytokine/immune cell interactions play in tissue homeostasis and during disease have prompted the molecular design of targeted fluorophores to monitor their activity in real time. Whereas activatable probes for imaging immune-related enzymes are common, many immunological functions are mediated by binding events between cytokines and their cognate receptors that are hard to monitor by live-cell imaging. A prime example is interleukin-33 (IL-33), a key cytokine in innate and adaptive immunity, whose interaction with the ST2 cell-surface receptor results in downstream signaling and activation of NF-κB and AP-1 pathways. In the present work, we have designed a chemical platform to site-specifically introduce OFF-to-ON BODIPY fluorophores into full cytokine proteins and generate the first nativelike fluorescent analogues of IL-33. Among different incorporation strategies, chemical aminoacylation followed by bioorthogonal derivatization led to the best labeling results. Importantly, the BODIPY-labeled IL-33 derivatives-unlike IL-33-GFP constructs-exhibited ST2-specific binding and downstream bioactivity profiles comparable to those of the wild-type interleukin. Real-time fluorescence microscopy assays under no wash conditions confirmed the internalization of IL-33 through ST2 receptors and its intracellular trafficking through the endosomal pathway. We envision that the modularity and versatility of our BODIPY labeling platform will facilitate the synthesis of minimally tagged fluorogenic cytokines as the next generation of imaging reagents for real-time visualization of signaling events in live immune cells.

3.
Nat Commun ; 12(1): 5429, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521822

RESUMO

Bacillus subtilis is a model gram-positive bacterium, commonly used to explore questions across bacterial cell biology and for industrial uses. To enable greater understanding and control of proteins in B. subtilis, here we report broad and efficient genetic code expansion in B. subtilis by incorporating 20 distinct non-standard amino acids within proteins using 3 different families of genetic code expansion systems and two choices of codons. We use these systems to achieve click-labelling, photo-crosslinking, and translational titration. These tools allow us to demonstrate differences between E. coli and B. subtilis stop codon suppression, validate a predicted protein-protein binding interface, and begin to interrogate properties underlying bacterial cytokinesis by precisely modulating cell division dynamics in vivo. We expect that the establishment of this simple and easily accessible chemical biology system in B. subtilis will help uncover an abundance of biological insights and aid genetic code expansion in other organisms.


Assuntos
Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Código Genético , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Códon , Citocinese/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Ligação Proteica , Biossíntese de Proteínas , Mapeamento de Interação de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo
4.
Microbiol Spectr ; 9(2): e0031321, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34523989

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has brought about the unprecedented expansion of highly sensitive molecular diagnostics as a primary infection control strategy. At the same time, many laboratories have shifted focus to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research and diagnostic development, leading to large-scale production of SARS-CoV-2 nucleic acids that can interfere with these tests. We have identified multiple instances, in independent laboratories, in which nucleic acids generated in research settings are suspected to have caused researchers to test positive for SARS-CoV-2 in surveillance testing. In some cases, the affected individuals did not work directly with these nucleic acids but were exposed via a contaminated surface or object. Though researchers have long been vigilant of DNA contaminants, the transfer of these contaminants to SARS-CoV-2 testing samples can result in anomalous test results. The impact of these incidents stretches into the public sphere, placing additional burdens on public health resources, placing affected researchers and their contacts in isolation and quarantine, removing them from the testing pool for 3 months, and carrying the potential to trigger shutdowns of classrooms and workplaces. We report our observations as a call for increased stewardship over nucleic acids with the potential to impact both the use and development of diagnostics. IMPORTANCE To meet the challenges imposed by the COVID-19 pandemic, research laboratories shifted their focus and clinical diagnostic laboratories developed and utilized new assays. Nucleic acid-based testing became widespread and, for the first time, was used as a prophylactic measure. We report 15 cases of researchers at two institutes testing positive for SARS-CoV-2 on routine surveillance tests, in the absence of any symptoms or transmission. These researchers were likely contaminated with nonhazardous nucleic acids generated in the laboratory in the course of developing new SARS-CoV-2 diagnostics. These contaminating nucleic acids were persistent and widespread throughout the laboratory. We report these findings as a cautionary tale to those working with nucleic acids used in diagnostic testing and as a call for careful stewardship of diagnostically relevant molecules. Our conclusions are especially relevant as at-home COVID-19 testing gains traction in the marketplace and these amplicons may impact on the general public.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Contaminação por DNA , DNA Viral/genética , SARS-CoV-2/genética , Reações Falso-Positivas , Humanos , Técnicas de Diagnóstico Molecular , RNA Viral/genética , SARS-CoV-2/isolamento & purificação
5.
mBio ; 12(5): e0234621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544272

RESUMO

Members of the Rhizobiales are polarly growing bacteria that lack homologs of the canonical Rod complex. To investigate the mechanisms underlying polar cell wall synthesis, we systematically probed the function of cell wall synthesis enzymes in the plant pathogen Agrobacterium tumefaciens. The development of fluorescent d-amino acid dipeptide (FDAAD) probes, which are incorporated into peptidoglycan by penicillin-binding proteins in A. tumefaciens, enabled us to monitor changes in growth patterns in the mutants. Use of these fluorescent cell wall probes and peptidoglycan compositional analysis demonstrate that a single class A penicillin-binding protein is essential for polar peptidoglycan synthesis. Furthermore, we find evidence of an additional mode of cell wall synthesis that requires ld-transpeptidase activity. Genetic analysis and cell wall targeting antibiotics reveal that the mechanism of unipolar growth is conserved in Sinorhizobium and Brucella. This work provides insights into unipolar peptidoglycan biosynthesis employed by the Rhizobiales during cell elongation. IMPORTANCE While the structure and function of the bacterial cell wall are well conserved, the mechanisms responsible for cell wall biosynthesis during elongation are variable. It is increasingly clear that rod-shaped bacteria use a diverse array of growth strategies with distinct spatial zones of cell wall biosynthesis, including lateral elongation, unipolar growth, bipolar elongation, and medial elongation. Yet the vast majority of our understanding regarding bacterial elongation is derived from model organisms exhibiting lateral elongation. Here, we explore the role of penicillin-binding proteins in unipolar elongation of Agrobacterium tumefaciens and related bacteria within the Rhizobiales. Our findings suggest that penicillin-binding protein 1a, along with a subset of ld-transpeptidases, drives unipolar growth. Thus, these enzymes may serve as attractive targets for biocontrol of pathogenic Rhizobiales.


Assuntos
Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Alphaproteobacteria/química , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Parede Celular/química , Parede Celular/genética , Parede Celular/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética
6.
Nat Commun ; 12(1): 2369, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888691

RESUMO

Photoactivatable molecules enable ablation of malignant cells under the control of light, yet current agents can be ineffective at early stages of disease when target cells are similar to healthy surrounding tissues. In this work, we describe a chemical platform based on amino-substituted benzoselenadiazoles to build photoactivatable probes that mimic native metabolites as indicators of disease onset and progression. Through a series of synthetic derivatives, we have identified the key chemical groups in the benzoselenadiazole scaffold responsible for its photodynamic activity, and subsequently designed photosensitive metabolic warheads to target cells associated with various diseases, including bacterial infections and cancer. We demonstrate that versatile benzoselenadiazole metabolites can selectively kill pathogenic cells - but not healthy cells - with high precision after exposure to non-toxic visible light, reducing any potential side effects in vivo. This chemical platform provides powerful tools to exploit cellular metabolic signatures for safer therapeutic and surgical approaches.


Assuntos
Infecções Bacterianas/tratamento farmacológico , Corantes Fluorescentes/administração & dosagem , Glioblastoma/tratamento farmacológico , Compostos Organosselênicos/administração & dosagem , Fotoquimioterapia/métodos , Animais , Técnicas de Cocultura , Corantes Fluorescentes/efeitos adversos , Corantes Fluorescentes/química , Corantes Fluorescentes/efeitos da radiação , Glioblastoma/patologia , Humanos , Microscopia Intravital , Luz , Testes de Sensibilidade Microbiana , Microscopia Confocal , Microscopia de Fluorescência , Compostos Organosselênicos/efeitos adversos , Compostos Organosselênicos/química , Compostos Organosselênicos/efeitos da radiação , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
8.
ACS Chem Biol ; 15(7): 1852-1861, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32603088

RESUMO

We report a tunable chemical genetics approach for enhancing genetic code expansion in different wild-type bacterial strains that employ apidaecin-like, antimicrobial peptides observed to temporarily sequester and thereby inhibit Release Factor 1 (RF1). In a concentration-dependent matter, these peptides granted a conditional lambda phage resistance to a recoded Escherichia coli strain with nonessential RF1 activity and promoted multisite nonstandard amino acid (nsAA) incorporation at in-frame amber stop codons in vivo and in vitro. When exogenously added, the peptides stimulated specific nsAA incorporation in a variety of sensitive, wild-type (RF1+) strains, including Agrobacterium tumefaciens, a species in which nsAA incorporation has not been previously reported. Improvement in nsAA incorporation was typically 2-15-fold in E. coli BL21, MG1655, and DH10B strains and A. tumefaciens with the >20-fold improvement observed in probiotic E. coli Nissle 1917. In-cell expression of these peptides promoted multisite nsAA incorporation in transcripts with up to 6 amber codons, with a >35-fold increase in BL21 showing moderate toxicity. Leveraging this RF1 sensitivity allowed multiplexed partial recoding of MG1655 and DH10B that rapidly resulted in resistant strains that showed an additional approximately twofold boost to nsAA incorporation independent of the peptide. Finally, in-cell expression of an apidaecin-like peptide library allowed the discovery of new peptide variants with reduced toxicity that still improved multisite nsAA incorporation >25-fold. In parallel to genetic reprogramming efforts, these new approaches can facilitate genetic code expansion technologies in a variety of wild-type bacterial strains.


Assuntos
Aminoácidos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fatores de Terminação de Peptídeos/antagonistas & inibidores , Biossíntese de Proteínas/fisiologia , Proteínas/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Bactérias/efeitos dos fármacos , Código Genético , Mutação , Biblioteca de Peptídeos , Saccharomyces cerevisiae/efeitos dos fármacos
9.
Elife ; 92020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31916938

RESUMO

Helical cell shape is necessary for efficient stomach colonization by Helicobacter pylori, but the molecular mechanisms for generating helical shape remain unclear. The helical centerline pitch and radius of wild-type H. pylori cells dictate surface curvatures of considerably higher positive and negative Gaussian curvatures than those present in straight- or curved-rod H. pylori. Quantitative 3D microscopy analysis of short pulses with either N-acetylmuramic acid or D-alanine metabolic probes showed that cell wall growth is enhanced at both sidewall curvature extremes. Immunofluorescence revealed MreB is most abundant at negative Gaussian curvature, while the bactofilin CcmA is most abundant at positive Gaussian curvature. Strains expressing CcmA variants with altered polymerization properties lose helical shape and associated positive Gaussian curvatures. We thus propose a model where CcmA and MreB promote PG synthesis at positive and negative Gaussian curvatures, respectively, and that this patterning is one mechanism necessary for maintaining helical shape.


Round spheres, straight rods, and twisting corkscrews, bacteria come in many different shapes. The shape of bacteria is dictated by their cell wall, the strong outer barrier of the cell. As bacteria grow and multiply, they must add to their cell wall while keeping the same basic shape. The cells walls are made from long chain-like molecules via processes that are guided by protein scaffolds within the cell. Many common antibiotics, including penicillin, stop bacterial infections by interrupting the growth of cell walls. Helicobacter pylori is a common bacterium that lives in the gut and, after many years, can cause stomach ulcers and stomach cancer. H. pylori are shaped in a twisting helix, much like a corkscrew. This shape helps H. pylori to take hold and colonize the stomach. It remains unclear how H. pylori creates and maintains its helical shape. The helix is much more curved than other bacteria, and H. pylori does not have the same helpful proteins that other curved bacteria do. If H. pylori grows asymmetrically, adding more material to the cell wall on its long outer side to create a twisting helix, what controls the process? To find out, Taylor et al. grew H. pylori cells and watched how the cell walls took shape. First, a fluorescent dye was attached to the building blocks of the cell wall or to underlying proteins that were thought to help direct its growth. The cells were then imaged in 3D, and images from hundreds of cells were reconstructed to analyze the growth patterns of the bacteria's cell wall. A protein called CcmA was found most often on the long side of the twisting H. pylori. When the CcmA protein was isolated in a dish, it spontaneously formed sheets and helical bundles, confirming its role as a structural scaffold for the cell wall. When CcmA was absent from the cell of H. pylori, Taylor et al. observed that the pattern of cell growth changed substantially. This work identifies a key component directing the growth of the cell wall of H. pylori and therefore, a new target for antibiotics. Its helical shape is essential for H. pylori to infect the gut, so blocking the action of the CcmA protein may interrupt cell wall growth and prevent stomach infections.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Helicobacter pylori/metabolismo , Alanina/metabolismo , Helicobacter pylori/citologia , Ácidos Murâmicos/metabolismo , Peptidoglicano/biossíntese
10.
Nat Rev Chem ; 4(6): 275-290, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37127957

RESUMO

Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein-protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging.

11.
ACS Chem Biol ; 14(12): 2745-2756, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31743648

RESUMO

Bacteria exhibit a myriad of different morphologies, through the synthesis and modification of their essential peptidoglycan (PG) cell wall. Our discovery of a fluorescent D-amino acid (FDAA)-based PG labeling approach provided a powerful method for observing how these morphological changes occur. Given that PG is unique to bacterial cells and a common target for antibiotics, understanding the precise mechanism(s) for incorporation of (F)DAA-based probes is a crucial determinant in understanding the role of PG synthesis in bacterial cell biology and could provide a valuable tool in the development of new antimicrobials to treat drug-resistant antibacterial infections. Here, we systematically investigate the mechanisms of FDAA probe incorporation into PG using two model organisms Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive). Our in vitro and in vivo data unequivocally demonstrate that these bacteria incorporate FDAAs using two extracytoplasmic pathways: through activity of their D,D-transpeptidases, and, if present, by their L,D-transpeptidases and not via cytoplasmic incorporation into a D-Ala-D-Ala dipeptide precursor. Our data also revealed the unprecedented finding that the DAA-drug, D-cycloserine, can be incorporated into peptide stems by each of these transpeptidases, in addition to its known inhibitory activity against D-alanine racemase and D-Ala-D-Ala ligase. These mechanistic findings enabled development of a new, FDAA-based, in vitro labeling approach that reports on subcellular distribution of muropeptides, an especially important attribute to enable the study of bacteria with poorly defined growth modes. An improved understanding of the incorporation mechanisms utilized by DAA-based probes is essential when interpreting results from high resolution experiments and highlights the antimicrobial potential of synthetic DAAs.


Assuntos
Aminoácidos/metabolismo , Sondas Moleculares/metabolismo , Peptidoglicano/biossíntese , Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Citoplasma/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Peptidil Transferases/metabolismo
12.
Nat Chem ; 11(4): 335-341, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30804500

RESUMO

Peptidoglycan is an essential cell wall component that maintains the morphology and viability of nearly all bacteria. Its biosynthesis requires periplasmic transpeptidation reactions, which construct peptide crosslinkages between polysaccharide chains to endow mechanical strength. However, tracking the transpeptidation reaction in vivo and in vitro is challenging, mainly due to the lack of efficient, biocompatible probes. Here, we report the design, synthesis and application of rotor-fluorogenic D-amino acids (RfDAAs), enabling real-time, continuous tracking of transpeptidation reactions. These probes allow peptidoglycan biosynthesis to be monitored in real time by visualizing transpeptidase reactions in live cells, as well as real-time activity assays of D,D- and L,D-transpeptidases and sortases in vitro. The unique ability of RfDAAs to become fluorescent when incorporated into peptidoglycan provides a powerful new tool to study peptidoglycan biosynthesis with high temporal resolution and prospectively enable high-throughput screening for inhibitors of peptidoglycan biosynthesis.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/biossíntese , Peptidil Transferases/metabolismo , Aminoácidos/química , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Ensaios Enzimáticos/métodos , Cinética , Streptomyces/enzimologia , Streptomyces/metabolismo
13.
Curr Biol ; 28(7): 1039-1051.e5, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29576473

RESUMO

To determine the fundamentals of cell growth, we must extend cell biological studies to non-model organisms. Here, we investigated the growth modes of the only two rods known to widen instead of elongating, Candidatus Thiosymbion oneisti and Thiosymbion hypermnestrae. These bacteria are attached by one pole to the surface of their respective nematode hosts. By incubating live Ca. T. oneisti and T. hypermnestrae with a peptidoglycan metabolic probe, we observed that the insertion of new cell wall starts at the poles and proceeds inward, concomitantly with FtsZ-based membrane constriction. Remarkably, in Ca. T. hypermnestrae, the proximal, animal-attached pole grows before the distal, free pole, indicating that the peptidoglycan synthesis machinery is host oriented. Immunostaining of the symbionts with an antibody against the actin homolog MreB revealed that it was arranged medially-that is, parallel to the cell long axis-throughout the symbiont life cycle. Given that depolymerization of MreB abolished newly synthesized peptidoglycan insertion and impaired divisome assembly, we conclude that MreB function is required for symbiont widening and division. In conclusion, our data invoke a reassessment of the localization and function of the bacterial actin homolog.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Nematoides/microbiologia , Peptidoglicano/metabolismo , Simbiose , Alphaproteobacteria/classificação , Alphaproteobacteria/metabolismo , Animais
14.
Nat Microbiol ; 3(2): 254, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29311645

RESUMO

In the original version of this Article, a grant number and acknowledgement were omitted. The Acknowledgements section should have stated that one of the 3D SIM microscopes used for this research was supported by Medical Research Council UK grant (MR/K015753/1) to S. Foster, University of Sheffield, UK, and that the authors thank C. Walther and S. Foster for the access and their kind help with this. This has now been corrected in all versions of the Article.

15.
Proc Natl Acad Sci U S A ; 115(3): 619-624, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29301968

RESUMO

Incorporation of nonstandard amino acids (nsAAs) leads to chemical diversification of proteins, which is an important tool for the investigation and engineering of biological processes. However, the aminoacyl-tRNA synthetases crucial for this process are polyspecific in regard to nsAAs and standard amino acids. Here, we develop a quality control system called "posttranslational proofreading" to more accurately and rapidly evaluate nsAA incorporation. We achieve this proofreading by hijacking a natural pathway of protein degradation known as the N-end rule, which regulates the lifespan of a protein based on its amino-terminal residue. We find that proteins containing certain desired N-terminal nsAAs have much longer half-lives compared with those proteins containing undesired amino acids. We use the posttranslational proofreading system to further evolve a Methanocaldococcus jannaschii tyrosyl-tRNA synthetase (TyrRS) variant and a tRNATyr species for improved specificity of the nsAA biphenylalanine in vitro and in vivo. Our newly evolved biphenylalanine incorporation machinery enhances the biocontainment and growth of genetically engineered Escherichia coli strains that depend on biphenylalanine incorporation. Finally, we show that our posttranslational proofreading system can be designed for incorporation of other nsAAs by rational engineering of the ClpS protein, which mediates the N-end rule. Taken together, our posttranslational proofreading system for in vivo protein sequence verification presents an alternative paradigm for molecular recognition of amino acids and is a major advance in our ability to accurately expand the genetic code.


Assuntos
Aminoácidos/metabolismo , Proteínas Arqueais/metabolismo , Methanocaldococcus/enzimologia , Biossíntese de Proteínas , Tirosina-tRNA Ligase/metabolismo , Compostos de Aminobifenil/metabolismo , Proteínas Arqueais/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Methanocaldococcus/genética , Engenharia de Proteínas , Processamento de Proteína Pós-Traducional , Proteólise , Tirosina-tRNA Ligase/genética
16.
Nat Microbiol ; 2(12): 1648-1657, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28974693

RESUMO

Modification of essential bacterial peptidoglycan (PG)-containing cell walls can lead to antibiotic resistance; for example, ß-lactam resistance by L,D-transpeptidase activities. Predatory Bdellovibrio bacteriovorus are naturally antibacterial and combat infections by traversing, modifying and finally destroying walls of Gram-negative prey bacteria, modifying their own PG as they grow inside prey. Historically, these multi-enzymatic processes on two similar PG walls have proved challenging to elucidate. Here, with a PG-labelling approach utilizing timed pulses of multiple fluorescent D-amino acids, we illuminate dynamic changes that predator and prey walls go through during the different phases of bacteria:bacteria invasion. We show formation of a reinforced circular port-hole in the prey wall, L,D-transpeptidaseBd-mediated D-amino acid modifications strengthening prey PG during Bdellovibrio invasion, and a zonal mode of predator elongation. This process is followed by unconventional, multi-point and synchronous septation of the intracellular Bdellovibrio, accommodating odd- and even-numbered progeny formation by non-binary division.


Assuntos
Diamino Aminoácidos/metabolismo , Aminoácidos/metabolismo , Bdellovibrio bacteriovorus/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bdellovibrio/metabolismo , Bdellovibrio bacteriovorus/citologia , Bdellovibrio bacteriovorus/enzimologia , Bdellovibrio bacteriovorus/genética , Escherichia coli/metabolismo , Genes Bacterianos/genética , Bactérias Gram-Negativas/metabolismo , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Deleção de Sequência , Fatores de Tempo
17.
Chem Sci ; 8(9): 6313-6321, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989665

RESUMO

Fluorescent d-amino acids (FDAAs) enable efficient in situ labeling of peptidoglycan in diverse bacterial species. Conducted by enzymes involved in peptidoglycan biosynthesis, FDAA labeling allows specific probing of cell wall formation/remodeling activity, bacterial growth and cell morphology. Their broad application and high biocompatibility have made FDAAs an important and effective tool for studies of peptidoglycan synthesis and dynamics, which, in turn, has created a demand for the development of new FDAA probes. Here, we report the synthesis of new FDAAs, with emission wavelengths that span the entire visible spectrum. We also provide data to characterize their photochemical and physical properties, and we demonstrate their utility for visualizing peptidoglycan synthesis in Gram-negative and Gram-positive bacterial species. Finally, we show the permeability of FDAAs toward the outer-membrane of Gram-negative organisms, pinpointing the probes available for effective labeling in these species. This improved FDAA toolkit will enable numerous applications for the study of peptidoglycan biosynthesis and dynamics.

18.
Translation (Austin) ; 5(1): e1327006, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28702280

RESUMO

Reconstituted cell-free protein synthesis systems such as the Protein synthesis Using Recombinant Elements (PURE) system give high-throughput and controlled access to in vitro protein synthesis. Here we show that compared with the commercial S30 crude extract based RTS 100 E. coli HY system, the PURE system has less mRNA degradation and produces up to ∼6-fold full-length proteins. However the majority of polypeptides PURE produces are partially translated or inactive since the signal from firefly luciferase (Fluc) translated in PURE is only ∼2/3rd of that measured using the RTS 100 E. coli HY S30 system. Both of the 2 batch systems suffer from low ribosome recycling efficiency when translating proteins from 82 kD to 224 kD. A systematic fed-batch analysis of PURE shows replenishment of 6 small molecule substrates individually or in combination before energy depletion increased Fluc protein yield by ∼1.5 to ∼2-fold, while creatine phosphate and magnesium have synergistic effects when added to the PURE system. Additionally, while adding EF-P to PURE reduced full-length protein translated, it increased the fraction of functional protein and reduced partially translated protein probably by slowing down the translation process. Finally, ArfA, rather than YaeJ or PrfH, helped reduce ribosome stalling when translating Fluc and improved system productivity in a template-dependent fashion.

19.
ACS Synth Biol ; 6(7): 1327-1336, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28330337

RESUMO

To build replicating systems with new functions, the engineering of existing biological machineries requires a sensible strategy. Protein synthesis Using Recombinant Elements (PURE) system consists of the desired components for transcription, translation, aminoacylation and energy regeneration. PURE might be the basis for a radically alterable, lifelike system after optimization. Here, we regenerated 54 E. coli ribosomal (r-) proteins individually from DNA templates in the PURE system. We show that using stable isotope labeling with amino acids, mass spectrometry based quantitative proteomics could detect 26 of the 33 50S and 20 of the 21 30S subunit r-proteins when coexpressed in batch format PURE system. By optimizing DNA template concentrations and adapting a miniaturized Fluid Array Device with optimized feeding solution, we were able to cogenerate and detect at least 29 of the 33 50S and all of the 21 30S subunit r-proteins in one pot. The boost on yield of a single r-protein in coexpression pool varied from ∼1.5 to 5-fold compared to the batch mode, with up to ∼2.4 µM yield for a single r-protein. Reconstituted ribosomes under physiological condition from PURE system synthesized 30S r-proteins and native 16S rRNA showed ∼13% activity of native 70S ribosomes, which increased to 21% when supplemented with GroEL/ES. This work also points to what is still needed to obtain self-replicating synthetic ribosomes in situ in the PURE system.


Assuntos
Proteômica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
20.
Science ; 355(6326): 739-743, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28209898

RESUMO

The mechanism by which bacteria divide is not well understood. Cell division is mediated by filaments of FtsZ and FtsA (FtsAZ) that recruit septal peptidoglycan-synthesizing enzymes to the division site. To understand how these components coordinate to divide cells, we visualized their movements relative to the dynamics of cell wall synthesis during cytokinesis. We found that the division septum was built at discrete sites that moved around the division plane. FtsAZ filaments treadmilled circumferentially around the division ring and drove the motions of the peptidoglycan-synthesizing enzymes. The FtsZ treadmilling rate controlled both the rate of peptidoglycan synthesis and cell division. Thus, FtsZ treadmilling guides the progressive insertion of new cell wall by building increasingly smaller concentric rings of peptidoglycan to divide the cell.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Citocinese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...