Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 35(3): 498-507, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38374644

RESUMO

Native ion mobility-mass spectrometry (IM-MS) typically introduces protein ions into the gas phase through nano-electrospray ionization (nESI). Many nESI setups have mobile stages for tuning the ion signal and extent of co-solute and salt adduction. However, tuning the position of the emitter capillary in nESI can have unintended downstream consequences for collision-induced unfolding or collision-induced dissociation (CIU/D) experiments. Here, we show that relatively small variations in the nESI emitter position can shift the midpoint (commonly called the "CID50" or "CIU50") potential of CID breakdown curves and CIU transitions by as much as 8 V on commercial instruments. A spatial "map" of the shift in CID50 for the loss of heme from holomyoglobin onto the emitter position on a Waters Synapt G2-Si mass spectrometer shows that emitter positions closer to the instrument inlet can result in significantly greater in-source activation, whereas different effects are found on an Agilent 6545XT instrument for the ions studied. A similar effect is observed for CID of the singly protonated leucine enkephalin peptide and Shiga toxin 1 subunit B homopentamer on the Waters Synapt G2-Si instrument. In-source activation effects on a Waters Synapt G2-Si are also investigated by examining the RMSD between CIU fingerprints acquired at different emitter positions and the shifts in CIU50 for structural transitions of bovine serum albumin and NIST monoclonal antibody.


Assuntos
Peptídeos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Peptídeos/química , Íons , Soroalbumina Bovina
2.
Analyst ; 148(2): 391-401, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36537590

RESUMO

Native ion mobility-mass spectrometry (IM-MS) has emerged as an information-rich technique for gas phase protein structure characterization; however, IM resolution is currently insufficient for the detection of subtle structural differences in large biomolecules. This challenge has spurred the development of collision-induced unfolding (CIU) which utilizes incremental gas phase activation to unfold a protein in order to expand the number of measurable descriptors available for native protein ions. Although CIU is now routinely used in native mass spectrometry studies, the interlaboratory reproducibility of CIU has not been established. Here we evaluate the reproducibility of the CIU data produced across three laboratories (University of Michigan, Texas A&M University, and Vanderbilt University). CIU data were collected for a variety of protein ions ranging from 8.6-66 kDa. Within the same laboratory, the CIU fingerprints were found to be repeatable with root mean square deviation (RMSD) values of less than 5%. Collision cross section (CCS) values of the CIU intermediates were consistent across the laboratories, with most features exhibiting an interlaboratory reproducibility of better than 1%. In contrast, the activation potentials required to induce protein CIU transitions varied between the three laboratories. To address these differences, three source assemblies were constructed with an updated ion activation hardware design utilizing higher mechanical tolerance specifications. The production-grade assemblies were found to produce highly consistent CIU data for intact antibodies, exhibiting high precision ion CCS and CIU transition values, thus opening the door to establishing databases of CIU fingerprints to support future biomolecular classification efforts.


Assuntos
Desdobramento de Proteína , Proteínas , Humanos , Reprodutibilidade dos Testes , Proteínas/química , Espectrometria de Massas/métodos , Íons/química
3.
Anal Chem ; 93(48): 16166-16174, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34808055

RESUMO

Ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) assays of monoclonal antibody (mAb)-based biotherapeutics have proven sensitive to disulfide bridge structures, glycosylation patterns, and small molecule conjugation levels. Despite promising prior reports detailing the capabilities of IM-MS and CIU to differentiate biosimilars, generic mAb therapeutics, there remain questions surrounding the sensitivity of CIU to mAb structure changes that occur upon stress, the reproducibility of such measurements across IM-MS platforms, and the correlation between CIU and differential scanning calorimetry (DSC) datasets. In this report, we describe a comprehensive IM-MS and CIU dataset acquired for three Infliximabs: Remicade, Inflectra, and Renflexis. We subject each infliximab sample to forced degradation through heat stress and observe broadly similar yet subtly different stability patterns for these three biotherapeutics. We find that CIU is capable of tracking differences in mAb higher-order structure (HOS) imparted during forced heat stress degradation and that DSC is less sensitive to these alterations in comparison. Furthermore, we collected our comprehensive IM-MS and CIU data across two instrument platforms (Waters G2 and Agilent 6560), with both producing similar abilities to differentiate mAbs while also revealing minor differences between the results obtained on the two instruments. Finally, we demonstrate that CIU-based heatmaps and classification allow for rapid assessment of the most differentiating charge states for the analysis of infliximab, and using multiplexed classification, we conservatively estimate a 30-fold improvement in the time required to perform mAb stability and HOS measurements over standard DSC tools.


Assuntos
Medicamentos Biossimilares , Desdobramento de Proteína , Resposta ao Choque Térmico , Infliximab , Espectrometria de Massas , Reprodutibilidade dos Testes
4.
Anal Chim Acta ; 1163: 338508, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34024419

RESUMO

The focus of this work was the implementation of ion mobility (IM) and a prototype quadrupole driver within data independent acquisition (DIA) using a drift tube IM-QTOFMS aiming to improve the level of confidence in identity confirmation workflows for non-targeted metabolomics. In addition to conventional all ions (IM-AI) acquisition, quadrupole resolved all ions (IM-QRAI) acquisition allows a drift time-directed precursor ion isolation in DIA using sequential isolation of precursor ions using mass windows of up to 100 Da which can be rapidly ramped across single ion mobility transients (i.e., <100 ms) according to the arrival times of precursor ions. Both IM-AI and IM-QRAI approaches were used for identity confirmation and relative quantification of metabolites in cellular extracts of the cell factory host Pichia pastoris. Samples were spiked with a uniformly 13C-labeled (U13C) internal standard and LC with low-field drift tube IM separation was used in combination with IM-AI and IM-QRAI. Combining excellent hardware performance and correlation of IM arrival times of natural (natC) and U13C metabolites enabled alignment of signals in the arrival time domain (DTCCSN2 differences ≤0.3%), and, in the case of IM-QRAI operation, maintenance of quantitative signals in comparison to IM-AI. The combination of tailored IM-QRAI methods for precursor ion isolation and IM separation also minimized the occurrence of spectral interferences in complex DIA datasets. Combined use of the software tools MS-DIAL, MS-Finder and Skyline for peak picking, feature alignment, reconciliation of natC and U13C isotopologue pairs, deconvolution of fragment spectra from DIA data, identity confirmation (including DTCCSN2) and targeted re-extraction of datafiles were employed for the data processing workflow. Overall, the combined new acquisition and data processing approaches enabled 87 metabolites to be identified between Level 1 (identified by standard compound) and Level 3.2 (accurate mass spectrum and number of carbons confirmed). The developed methods constitute promising metabolomics discovery tools and can be used to elucidate the number of carbon atoms present in unknown metabolites in stable isotope-supported metabolomics.


Assuntos
Metabolômica , Software , Íons , Espectrometria de Massas , Saccharomycetales
5.
Anal Chem ; 92(23): 15489-15496, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166123

RESUMO

Native ion mobility-mass spectrometry (IM-MS) is capable of revealing much that remains unknown within the structural proteome, promising such information on refractory protein targets. Here, we report the development of a unique drift tube IM-MS (DTIM-MS) platform, which combines high-energy source optics for improved collision induced unfolding (CIU) experiments and an electromagnetostatic cell for electron capture dissociation (ECD). We measured a series of high precision collision cross section (CCS) values for protein and protein complex ions ranging from 6-1600 kDa, exhibiting an average relative standard deviation (RSD) of 0.43 ± 0.20%. Furthermore, we compare our CCS results to previously reported DTIM values, finding strong agreement across similarly configured instrumentation (average RSD of 0.82 ± 0.73%), and systematic differences for DTIM CCS values commonly used to calibrate traveling-wave IM separators (-3% average RSD). Our CIU experiments reveal that the modified DTIM-MS instrument described here achieves enhanced levels of ion activation when compared with any previously reported IM-MS platforms, allowing for comprehensive unfolding of large multiprotein complex ions as well as interplatform CIU comparisons. Using our modified DTIM instrument, we studied two protein complexes. The enhanced CIU capabilities enable us to study the gas phase stability of the GroEL 7-mer and 14-mer complexes. Finally, we report CIU-ECD experiments for the alcohol dehydrogenase tetramer, demonstrating improved sequence coverage by combining ECD fragmentation integrated over multiple CIU intermediates. Further improvements for such native top-down sequencing experiments were possible by leveraging IM separation, which enabled us to separate and analyze CID and ECD fragmentation simultaneously.


Assuntos
Elétrons , Espectrometria de Massas/métodos , Desdobramento de Proteína , Proteínas/química
6.
J Am Soc Mass Spectrom ; 31(12): 2437-2442, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32841564

RESUMO

Mass spectrometry imaging (MSI) is a powerful technique for the label-free spatially resolved analysis of biological tissues. Coupling ion mobility (IM) separation with MSI allows for separation of isobars in the mobility dimension and increases confidence of peak assignments. Recently, imaging experiments have been implemented on several commercially available and custom-designed ion mobility instruments, making IM-MSI experiments more broadly accessible to the MS community. However, the absence of open access data analysis software for IM-MSI systems presents a bottleneck. Herein, we present an imaging workflow to visualize IM-MSI data produced on the Agilent 6560 ion mobility quadrupole time-of-flight system. Specifically, we have developed a Python script, the ion mobility-mass spectrometry image creation script (IM-MSIC), which interfaces Agilent's Mass Hunter Mass Profiler software with the MacCoss lab's Skyline software and generates drift time and mass-to-charge-selected ion images. In the workflow, Mass Profiler is used for an untargeted feature detection. The IM-MSIC script mediates user input of data, extracts ion chronograms utilizing Skyline's command-line interface, and then proceeds toward ion image generation within a single user interface. Ion image postprocessing is subsequently performed using different tools implemented in accompanying scripts. Though the current work only showcases Agilent IM-MSI data, this workflow can be readily adapted for use with most major instrument vendors.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Software , Humanos , Processamento de Imagem Assistida por Computador/métodos , Fluxo de Trabalho
7.
Anal Chem ; 92(10): 7218-7225, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32338885

RESUMO

Elucidating the structures and stabilities of proteins and their complexes is paramount to understanding their biological functions in cellular processes. Native mass spectrometry (MS) coupled with ion mobility spectrometry (IMS) is emerging as an important biophysical technique owing to its high sensitivity, rapid analysis time, and ability to interrogate sample complexity or heterogeneity and the ability to probe protein structure dynamics. Here, a commercial IMS-MS platform has been modified for static native ESI emitters and an extended mass-to-charge range (20 kDa m/z) and its performance capabilities and limits were explored for a range of protein and protein complexes. The results show new potential for this instrument platform for studies of large protein and protein complexes and provides a roadmap for extending the performance metrics for studies of even larger, more complex systems, namely, membrane protein complexes and their interactions with ligands.


Assuntos
Concanavalina A/análise , Frutose-Bifosfato Aldolase/análise , Estreptavidina/análise , Ubiquitina/análise , Frutose-Bifosfato Aldolase/metabolismo , Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Conformação Proteica , Desdobramento de Proteína
8.
Methods Mol Biol ; 2084: 79-94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31729654

RESUMO

This chapter describes the developments in drift-tube ion mobility-mass spectrometry (DTIM-MS) that have driven application development in 'omics analyses. Harnessing the additional, orthogonal separation that DTIM provides increased confidence in compound identifications as the mass spectral complexity can be reduced and mobility-derived parameters (most prominently the collision cross section, CCS) used to support identity confirmation goals for a variety of 'omics application areas. Presented within this contribution is a methodology for improving the transmission and maintaining accurate determination of drift time-derived CCS (DTCCS) for low molecular weight compounds for a typical nontargeted 'omics (metabolomics) workflow using liquid chromatography in combination with DTIM-MS.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Metabolômica , Cromatografia Líquida de Alta Pressão , Biologia Computacional/métodos , Bases de Dados Factuais , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Anal Bioanal Chem ; 411(24): 6265-6274, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31302708

RESUMO

This study of ion accumulation/release behavior relevant to ion mobility-mass spectrometry (IM-MS) as employed for non-targeted metabolomics involves insight from theoretical studies, and controlled reference experiments involving measurement of low and high molecular mass metabolites in varying concentrations within a complex matrix (yeast extracts). Instrumental settings influencing ion trapping (accumulation time) and release conditions in standard and multiplexed operation have been examined, and translation of these insights to liquid chromatography (LC) in combination with drift tube IM-MS measurements has been made. The focus of the application is non-targeted metabolomics using carefully selected samples to allow quantitative interpretations to be made. Experimental investigation of the IM-MS ion utilization efficiency particularly focusing on the use of the Hadamard transform multiplexing with 4-bit pseudo-random pulsing sequence for assessment of low and high molecular mass metabolites is compared with theoretical modeling of gas-phase behavior of small and large molecules in the IM trapping funnel. Increasing the trapping time for small metabolites with standard IM-MS operation is demonstrated to have a deleterious effect on maintaining a quantitative representation of the metabolite abundance. The application of these insights to real-world non-targeted metabolomics assessment of intracellular extracts from biotechnologically relevant production processes is presented, and the results were compared to LC×IM-MS measurements of the same samples. Spiking of a uniformly 13C-labeled yeast extract (as a standard matrix) with varying amounts of natural metabolites is used to assess the linearity and sensitivity according to the instrument mode of operation (i.e., LC-MS, LC×IM-MS, and LC×[multiplexed]IM-MS). When comparing metabolite quantification using standard and multiplexed operation, sensitivity gain factors of 2-8 were obtained for metabolites with m/z below 250. Taken together, the simulation and experimental results of this study provide insight for optimizing measurement conditions for metabolomics and highlight the need for implementation of multiplexing strategies using short trapping times as relative quantification (e.g., in the context with non-targeted differential analysis) with sufficient sensitivity and working range is a requirement in this field of application.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Metabolômica , Aminoácidos/metabolismo , Íons , Padrões de Referência
10.
Anal Chem ; 91(13): 8137-8146, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31194508

RESUMO

Collision-induced unfolding (CIU) of protein ions and their noncovalent complexes offers relatively rapid access to a rich portfolio of biophysical information, without the need to tag or purify proteins prior to analysis. Such assays have been characterized extensively for a range of therapeutic proteins, proving exquisitely sensitive to alterations in protein sequence, structure, and post-translational modification state. Despite advantages over traditional probes of protein stability, improving the throughput and information content of gas-phase protein unfolding assays remains a challenge for current instrument platforms. In this report, we describe modifications to an Agilent 6560 drift tube ion mobility-mass spectrometer in order to perform robust, simultaneous CIU across all precursor ions detected. This approach dramatically increases the speed associated with typical CIU assays, which typically involve mass selection of narrow m/ z regions prior to collisional activation, and thus their development requires a comprehensive assessment of charge-stripping reactions that can unintentionally pollute CIU data with chemical noise when more than one precursor ion is allowed to undergo simultaneous activation. By studying the unfolding and dissociation of intact antibody ions, a key analyte class associated with biotherapeutics, we reveal a predictive relationship between the precursor charge state, the amount of buffer components bound to the ions of interest, and the amount of charge stripping detected. We then utilize our knowledge of antibody charge stripping to rapidly capture CIU data for a range of antibody subclasses and subtypes across all charge states simultaneously, demonstrating a strong charge state dependence on the information content of CIU. Finally, we demonstrate that CIU data collection times can be further reduced by scanning fewer voltage steps, enabling us to optimize the throughput of our improved CIU methods and confidently differentiate antibody variant ions using ∼20% of the data typically collected during CIU. Taken together, our results characterize a new instrument platform for biotherapeutic stability measurements with dramatically improved throughput and information content.

11.
Mass Spectrom Rev ; 38(3): 291-320, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707468

RESUMO

Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

12.
Analyst ; 143(17): 4147-4154, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30065998

RESUMO

In this study, we have evaluated a low field limit drift tube ion mobility device for ion mobility-mass spectrometry (IM-MS) measurements that uses nitrogen as a bath gas with electrospray ionization on a modified Q-TOF instrument. We have determined reduced mobility (K0) and collision cross section (CCS) values for a group of analyte ions that have been characterized previously in other drift tube IM-MS instruments. Our determinations of CCS for this set of ions as well as for standards are in agreement with published values. Because of their importance in biophysics and pharmaceuticals, we expanded our analysis to investigate the properties of cyclodextrins in this system. We present CCS data for both positively and negatively charged cyclodextrins and, for purposes of comparison, maltodextrose ions. Our results are the first reports of these materials as negative ions.

13.
Anal Chem ; 89(17): 9048-9055, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28763190

RESUMO

Collision cross section (CCS) measurements resulting from ion mobility-mass spectrometry (IM-MS) experiments provide a promising orthogonal dimension of structural information in MS-based analytical separations. As with any molecular identifier, interlaboratory standardization must precede broad range integration into analytical workflows. In this study, we present a reference drift tube ion mobility mass spectrometer (DTIM-MS) where improvements on the measurement accuracy of experimental parameters influencing IM separations provide standardized drift tube, nitrogen CCS values (DTCCSN2) for over 120 unique ion species with the lowest measurement uncertainty to date. The reproducibility of these DTCCSN2 values are evaluated across three additional laboratories on a commercially available DTIM-MS instrument. The traditional stepped field CCS method performs with a relative standard deviation (RSD) of 0.29% for all ion species across the three additional laboratories. The calibrated single field CCS method, which is compatible with a wide range of chromatographic inlet systems, performs with an average, absolute bias of 0.54% to the standardized stepped field DTCCSN2 values on the reference system. The low RSD and biases observed in this interlaboratory study illustrate the potential of DTIM-MS for providing a molecular identifier for a broad range of discovery based analyses.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Laboratórios/normas , Espectrometria de Massas/métodos , Calibragem , Lipídeos/química , Estrutura Molecular , Nitrogênio/química , Proteínas/química , Reprodutibilidade dos Testes
14.
Clin Mass Spectrom ; 2: 1-10, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29276770

RESUMO

Characterization of endogenous metabolites and xenobiotics is essential to deconvoluting the genetic and environmental causes of disease. However, surveillance of chemical exposure and disease-related changes in large cohorts requires an analytical platform that offers rapid measurement, high sensitivity, efficient separation, broad dynamic range, and application to an expansive chemical space. Here, we present a novel platform for small molecule analyses that addresses these requirements by combining solid-phase extraction with ion mobility spectrometry and mass spectrometry (SPE-IMS-MS). This platform is capable of performing both targeted and global measurements of endogenous metabolites and xenobiotics in human biofluids with high reproducibility (CV 6 3%), sensitivity (LODs in the pM range in biofluids) and throughput (10-s sample-to-sample duty cycle). We report application of this platform to the analysis of human urine from patients with and without type 1 diabetes, where we observed statistically significant variations in the concentration of disaccharides and previously unreported chemical isomers. This SPE-IMS-MS platform overcomes many of the current challenges of large-scale metabolomic and exposomic analyses and offers a viable option for population and patient cohort screening in an effort to gain insights into disease processes and human environmental chemical exposure.

15.
Analyst ; 140(20): 6834-44, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26178817

RESUMO

A recently developed uniform-field high resolution ion mobility (IM) quadrupole time of flight (Q-TOF) mass spectrometer is used for evaluating the utility of alternate drift gases for complex sample analyses. This study provides collision cross section comparison for 275 total pesticides including structural isomers in nitrogen, helium, carbon dioxide, nitrous oxide and sulfur hexafluoride drift gases. Furthermore, a set of small molecules and Agilent tune mix compounds were used to study the trends in experimentally derived collision cross section values in argon and the alternate drift gases. Two isomeric trisaccharides, melezitose and raffinose, were used to evaluate the effect of the drift gasses for mobility separation. The hybrid ion mobility Q-TOF mass analyzer used in this study consists of a low pressure uniform field drift tube apparatus coupled to a high resolution Q-TOF mass spectrometer. Conventionally, low pressure ion mobility instruments are operated using helium drift gas to obtain optimal structural information and collision cross-section (CCS) values that compare to theoretical CCS values. The instrument employed in this study uses nitrogen as the standard drift gas but also allows the utility of alternate drift gases for improved structural analysis and selectivity under certain conditions. The use of alternate drift gases with a wide range of polarizabilities allows the evaluation of mobility separation power in terms of induced dipole interactions between the drift gas and the analyte ions.

16.
Analyst ; 140(20): 6824-33, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26191544

RESUMO

An extensive study of two current ion mobility resolving power theories ("conditional" and "semi-empirical") was undertaken using a recently developed drift tube ion mobility-mass spectrometer. The current study investigates the quantitative agreement between experiment and theory at reduced pressure (4 Torr) for a wide range of initial ion gate widths (100 to 500 µs), and ion mobility values (K0 from 0.50 to 3.0 cm(2) V(-1) s(-1)) representing measurements obtained in helium, nitrogen, and carbon dioxide drift gas. Results suggest that the conditional resolving power theory deviates from experimental results for low mobility ions (e.g., high mass analytes) and for initial ion gate widths beyond 200 µs. A semi-empirical resolving power theory provided close-correlation of predicted resolving powers to experimental results across the full range of mobilities and gate widths investigated. Interpreting the results from the semi-empirical theory, the performance of the current instrumentation was found to be highly linear for a wide range of analytes, with optimal resolving powers being accessible for a narrow range of drift fields between 14 and 17 V cm(-1). While developed using singly-charged ion mobility data, preliminary results suggest that the semi-empirical theory has broader applicability to higher-charge state systems.


Assuntos
Espectrometria de Massas/métodos , Métodos Analíticos de Preparação de Amostras , Espectrometria de Massas/instrumentação , Pressão
17.
Anal Chem ; 86(4): 2107-16, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24446877

RESUMO

Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.


Assuntos
Carboidratos/análise , Lipídeos/análise , Nitrogênio/química , Transição de Fase , Espectrometria de Massa de Íon Secundário/métodos , Gases/química , Espectrometria de Massas/métodos
18.
J Proteome Res ; 11(2): 576-85, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22148953

RESUMO

Altered branching and aberrant expression of N-linked glycans is known to be associated with disease states such as cancer. However, the complexity of determining such variations hinders the development of specific glycomic approaches for assessing disease states. Here, we examine a combination of ion mobility spectrometry (IMS) and mass spectrometry (MS) measurements, with principal component analysis (PCA) for characterizing serum N-linked glycans from 81 individuals: 28 with cirrhosis of the liver, 25 with liver cancer, and 28 apparently healthy. Supervised PCA of combined ion-mobility profiles for several, to as many as 10 different mass-to-charge ratios for glycan ions, improves the delineation of diseased states. This extends an earlier study [J. Proteome Res.2008, 7, 1109-1117] of isomers associated with a single glycan (S(1)H(5)N(4)) in which PCA analysis of the IMS profiles appeared to differentiate the liver cancer group from the other samples. Although performed on a limited number of test subjects, the combination of IMS-MS for different combinations of ions and multivariate PCA analysis shows promise for characterizing disease states.


Assuntos
Cirrose Hepática/sangue , Neoplasias Hepáticas/sangue , Polissacarídeos/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos , Adolescente , Adulto , Biologia Computacional/métodos , Glicoproteínas/sangue , Glicoproteínas/química , Humanos , Polissacarídeos/química , Polissacarídeos/classificação , Análise de Componente Principal , Estatísticas não Paramétricas , Espectrometria de Massas em Tandem
19.
J Am Soc Mass Spectrom ; 22(11): 2049-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21952760

RESUMO

A new, two-dimensional overtone mobility spectrometry (OMS-OMS) instrument is described for the analysis of complex peptide mixtures. OMS separations are based on the differences in mobilities of ions in the gas phase. The method utilizes multiple drift regions with modulated drift fields such that only ions with appropriate mobilities are transmitted to the detector. Here we describe a hybrid OMS-OMS combination that utilizes two independently operated OMS regions that are separated by an ion activation region. Mobility-selected ions from the first OMS region are exposed to energizing collisions and may undergo structural transitions before entering the second OMS region. This method generates additional peak capacity and allows for higher selectivity compared with the one-dimensional OMS method. We demonstrate the approach using a three-protein tryptic digest spiked with the peptide Substance P. The [M + 3H](3+) ion from Substance P can be completely isolated from other components in this complex mixture prior to introduction into the mass spectrometer.


Assuntos
Fragmentos de Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Animais , Citocromos c/química , Citocromos c/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Cavalos , Humanos , Mioglobina/química , Mioglobina/metabolismo , Fragmentos de Peptídeos/metabolismo , Substância P/química , Substância P/metabolismo , Tripsina/metabolismo
20.
J Am Soc Mass Spectrom ; 22(5): 804-16, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21472515

RESUMO

The origin of non-integer overtone peaks in overtone mobility spectrometry (OMS) spectra is investigated by ion trajectory simulations. Simulations indicate that these OMS features arise from higher-order overtone series. An empirically-derived formula is presented as a means of describing the positions of peaks. The new equation makes it possible to determine collision cross sections from any OMS peak. Additionally, it is extended as a means of predicting the resolving power for any peak in an OMS distribution.


Assuntos
Espectrometria de Massas/métodos , Modelos Químicos , Algoritmos , Simulação por Computador , Rafinose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...