Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 150(1): 17-21, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618046

RESUMO

In the years since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic began and spread across the globe, lessons have been learned about the challenges and opportunities that a pandemic brings to humankind. Researchers have produced many vaccines at unprecedented speed to protect people, but they have also been cognizant of the challenges presented by a new and unexpected infectious disease. The scope of this review is to examine the path of vaccine discovery so far and identify potential targets. Here, we provide insight into the leading vaccines and their advantages and challenges. We discuss the emerging mutations within the SARS-CoV-2 spike protein and other issues that need to be addressed to overcome coronavirus disease 2019 (COVID-19) completely. Future research is needed to develop a cheap, temperature-stable vaccine providing long-term immunity that protects the upper respiratory tract.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
2.
bioRxiv ; 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34373854

RESUMO

Nucleoside modified mRNA combined with Acuitas Therapeutics' lipid nanoparticles (LNP) have been shown to support robust humoral immune responses in many preclinical animal vaccine studies and later in humans with the SARS-CoV-2 vaccination. We recently showed that this platform is highly inflammatory due to the LNPs' ionizable lipid component. The inflammatory property is key to support the development of potent humoral immune responses. However, the mechanism by which this platform drives T follicular helper cells (Tfh) and humoral immune responses remains unknown. Here we show that lack of Langerhans cells or cDC1s neither significantly affected the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cells and humoral immune responses, nor susceptibility towards the lethal challenge of influenza and SARS-CoV-2. However, the combined deletion of these two DC subsets led to a significant decrease in the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cell and humoral immune responses. Despite these observed defects, the still high antibody titers were sufficient to confer protection towards lethal viral challenges. We further found that IL-6, but not neutrophils, was required to generate Tfh cells and antibody responses. In summary, here we bring evidence that the mRNA-LNP platform can support protective adaptive immune responses in the absence of specific DC subsets through an IL-6 dependent and neutrophil independent mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA