Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047967

RESUMO

Phototoxicity and skin cancer are severe adverse effects of the anti-fungal drug Voriconazole (VOR). These adverse effects resemble those seen in xeroderma pigmentosum (XP), caused by defective DNA nucleotide excision repair (NER), and we show that VOR decreases NER capacity. We show that VOR treatment does not perturb the expression of NER, or other DNA damage-related genes, but that VOR localizes to heterochromatin, in complexes containing histone acetyltransferase GCN5. Impairment of GCN5 binding to histone H3 reduced acetylation of H3, restricting damage-dependent chromatin unfolding, thereby reducing NER initiation. Restoration of H3 histone acetylation using histone deacetylase inhibitors (HDACi), rescued VOR-induced NER repression, thus offering a preventive therapeutic option. These findings underline the importance of DNA damage-dependent chromatin remodeling as an important prerequisite of functional DNA repair.

2.
Dermatologie (Heidelb) ; 75(7): 528-538, 2024 Jul.
Artigo em Alemão | MEDLINE | ID: mdl-38916603

RESUMO

Photosensitivity represents an increased inflammatory reaction to sunlight, which can be observed particularly in the autoimmune disease lupus erythematosus. Cutaneous lupus erythematosus (CLE) can be provoked by ultraviolet (UV) radiation and can cause both acute, nonscarring and chronic, scarring skin changes. In systemic lupus erythematosus, on the other hand, provocation by UV radiation can lead to flare or progression of systemic involvement. The etiology of lupus erythematosus is multifactorial and includes genetic, epigenetic and immunologic mechanisms. In this review, we address the effect of UV radiation on healthy skin and photosensitive skin using the example of lupus erythematosus. We describe possible mechanisms of UV-triggered immune responses that could offer therapeutic approaches. Currently, photosensitivity can only be prevented by avoiding UV exposure itself. Therefore, it is important to better understand the underlying mechanisms in order to develop strategies to counteract the deleterious effects of photosensitivity.


Assuntos
Lúpus Eritematoso Cutâneo , Raios Ultravioleta , Humanos , Raios Ultravioleta/efeitos adversos , Lúpus Eritematoso Cutâneo/etiologia , Lúpus Eritematoso Cutâneo/imunologia , Lúpus Eritematoso Cutâneo/patologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/imunologia , Transtornos de Fotossensibilidade/etiologia , Transtornos de Fotossensibilidade/imunologia , Pele/efeitos da radiação , Pele/patologia , Pele/imunologia
3.
Clin Case Rep ; 12(5): e8881, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721567

RESUMO

Key Clinical Message: Keratosis palmoplantaris striata type I (SPPK-I) is a rare autosomal-dominant type of hereditary epidermolytic palmoplantar keratoderma, which can be caused by mutations in desmoglein-1 (DSG-1). Patients suffer from hyperkeratotic plaques and painful palmoplantar fissures. Unfortunately, treatment options including salicylic vaseline, topical corticosteroids, phototherapy, and retinoids are inefficient. Abstract: Hereditary palmoplantar keratodermas (PPKs) represent a heterogeneous group of rare skin disorders with epidermal palmoplantar hyperkeratosis. Mutations in the desmoglein 1 gene (DSG1), a transmembrane glycoprotein, have been reported primarily in striate PPKs. We report a patient with keratosis palmoplantaris striata type I (SPPK-I) with a specific pathogenic variant [c.349C>T, p.(Arg117*)] in DSG1. Despite increased understanding, effective treatment options for PPK, including SPPK-I, remain limited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA