Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 15(7): 1201-1217, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35899257

RESUMO

Understanding genetic structure and diversity within species can uncover associations with environmental and geographic attributes that highlight adaptive potential and inform conservation and management. The California gnatcatcher, Polioptila californica, is a small songbird found in desert and coastal scrub habitats from the southern end of Baja California Sur to Ventura County, California. Lack of congruence among morphological subspecies hypotheses and lack of measurable genetic structure found in a few genetic markers led to questions about the validity of subspecies within P. californica and the listing status of the coastal California gnatcatcher, P. c. californica. As a U.S. federally threatened subspecies, P. c. californica is recognized as a flagship for coastal sage scrub conservation throughout southern California. We used restriction site-associated DNA sequencing to develop a genomic dataset for the California gnatcatcher. We sampled throughout the species' range, examined genetic structure, gene-environment associations, and demographic history, and tested for concordance between genetic structure and morphological subspecies groups. Our data support two distinct genetic groups with evidence of restricted movement and gene flow near the U.S.- Mexico international border. We found that climate-associated outlier loci were more strongly differentiated than climate neutral loci, suggesting that local climate adaptation may have helped to drive differentiation after Holocene range expansions. Patterns of habitat loss and fragmentation are also concordant with genetic substructure throughout the southern California portion of the range. Finally, our genetic data supported the morphologically defined P. c. californica as a distinct group, but there was little evidence of genetic differentiation among other previously hypothesized subspecies in Baja California. Our data suggest that retaining and restoring connectivity, and protecting populations, particularly at the northern range edge, could help preserve existing adaptive potential to allow for future range expansion and long-term persistence of the California gnatcatcher.

2.
Sci Rep ; 9(1): 1355, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718575

RESUMO

Habitat loss and fragmentation are primary threats to biodiversity worldwide. We studied the impacts of habitat loss and fragmentation on genetic connectivity and diversity among local aggregations of the California gnatcatcher (Polioptila californica californica) across its U.S. range. With a dataset of 268 individuals genotyped at 19 microsatellite loci, we analyzed genetic structure across the range using clustering analyses, exact tests for population differentiation, and a pedigree analysis to examine the spatial distribution of first-order relatives throughout the study area. In addition, we developed a habitat suitability model and related percent suitable habitat to genetic diversity indices within aggregations at two spatial scales. We detected a single genetic cluster across the range, with weak genetic structure among recently geographically isolated aggregations in the northern part of the range. The pedigree analysis detected closely related individuals across disparate aggregations and across large geographic distances in the majority of the sampled range, demonstrating that recent long-distance dispersal has occurred within this species. Genetic diversity was independent of suitable habitat at a local 5-km scale, but increased in a non-linear fashion with habitat availability at a broader, 30-km scale. Diversity declined steeply when suitable habitat within 30-km fell below 10%. Together, our results suggest that California gnatcatchers retain genetic connectivity across the majority of the current distribution of coastal sage scrub fragments, with the exception of some outlying aggregations. Connectivity may help support long-term persistence under current conservation and management strategies. However, emerging structure among more remote aggregations and associations between available habitat and genetic diversity also suggest that continued loss of habitat could threaten diversity and connectivity in the future.


Assuntos
Migração Animal/fisiologia , Ecossistema , Passeriformes/genética , Passeriformes/fisiologia , Animais , California , Feminino , Variação Genética , Geografia , Masculino , Linhagem , Filogenia , Dinâmica Populacional
3.
Mol Ecol ; 24(10): 2349-63, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25819510

RESUMO

Achieving long-term persistence of species in urbanized landscapes requires characterizing population genetic structure to understand and manage the effects of anthropogenic disturbance on connectivity. Urbanization over the past century in coastal southern California has caused both precipitous loss of coastal sage scrub habitat and declines in populations of the cactus wren (Campylorhynchus brunneicapillus). Using 22 microsatellite loci, we found that remnant cactus wren aggregations in coastal southern California comprised 20 populations based on strict exact tests for population differentiation, and 12 genetic clusters with hierarchical Bayesian clustering analyses. Genetic structure patterns largely mirrored underlying habitat availability, with cluster and population boundaries coinciding with fragmentation caused primarily by urbanization. Using a habitat model we developed, we detected stronger associations between habitat-based distances and genetic distances than Euclidean geographic distance. Within populations, we detected a positive association between available local habitat and allelic richness and a negative association with relatedness. Isolation-by-distance patterns varied over the study area, which we attribute to temporal differences in anthropogenic landscape development. We also found that genetic bottleneck signals were associated with wildfire frequency. These results indicate that habitat fragmentation and alterations have reduced genetic connectivity and diversity of cactus wren populations in coastal southern California. Management efforts focused on improving connectivity among remaining populations may help to ensure population persistence.


Assuntos
Ecossistema , Variação Genética , Genética Populacional , Aves Canoras/genética , Alelos , Animais , Teorema de Bayes , California , Análise por Conglomerados , Conservação dos Recursos Naturais , Repetições de Microssatélites , Modelos Teóricos , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...