Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 130(1): 26-35, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33119470

RESUMO

Thiamine (vitamin B1) is necessary for energy production, especially in the heart. Recent studies have demonstrated that thiamine supplementation for cardiac diseases is beneficial. However, the detailed mechanisms underlying thiamine-preserved cardiac function have not been elucidated. To this end, we conducted a functional analysis, metabolome analysis, and electron microscopic analysis to unveil the mechanisms of preserved cardiac function through supplementation with thiamine for ischemic cardiac disease. Male Sprague-Dawley rats (around 10 wk old) were used. Following pretreatment with or without thiamine pyrophosphate (TPP; 300 µM), hearts were exposed to ischemia (40 min of global ischemia followed by 60 min of reperfusion). We measured the left ventricle developed pressure (LVDP) throughout the protocol. The LVDP during reperfusion in the TPP-treated heart was significantly higher than that in the untreated heart. Metabolome analysis was performed using capillary electrophoresis-time-of-flight mass spectrometry, and it revealed that the TPP-treated heart retained higher adenosine triphosphate (ATP) levels compared with the untreated heart after ischemia. The metabolic pathway showed that there was a significant increase in fumaric acid and malic acid from the tricarboxylic acid cycle following ischemia. Electron microscope analysis revealed that the mitochondria size in the TPP-treated heart was larger than that in the untreated heart. Mitochondrial fission in the TPP-treated heart was also inhibited, which was confirmed by a decrease in the phosphorylation level of DRP1 (fission related protein). TPP treatment for cardiac ischemia preserved ATP levels probably as a result of maintaining larger mitochondria by inhibiting fission, thereby allowing the TPP-treated heart to preserve contractility performance during reperfusion.NEW & NOTEWORTHY We found that treatment with thiamine can have a protective effect on myocardial ischemia. Thiamine likely mediates mitochondrial fission through the inhibition of DRP1 phosphorylation and the preservation of larger-sized mitochondria and ATP concentration, leading to higher cardiac contractility performance during the subsequent reperfusion state.


Assuntos
Trifosfato de Adenosina , Isquemia Miocárdica , Animais , Isquemia , Masculino , Mitocôndrias Cardíacas , Tamanho Mitocondrial , Ratos , Ratos Sprague-Dawley , Tiamina
2.
PLoS One ; 15(4): e0231905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315372

RESUMO

Myocardial fibrosis is often associated with cardiac hypertrophy; indeed, fibrosis is one of the most critical factors affecting prognosis. We aimed to identify the molecules involved in promoting fibrosis under hypertrophic stimuli. We previously established a rat model of cardiac hypertrophy by pulmonary artery banding, in which approximately half of the animals developed fibrosis in the right ventricle. Here, we first comprehensively analyzed mRNA expression in the right ventricle with or without fibrosis in pulmonary artery banding model rats by DNA microarray analysis (GSE141650 at NCBI GEO). The expression levels of 19 genes were up-regulated more than 1.5-fold in fibrotic hearts compared with non-fibrotic hearts. Among them, fibrosis growth factor (FGF) 23 showed one of the biggest increases in expression. Real-time PCR analysis also revealed that, among the FGF receptor (FGFR) family, FGFR1 was highly expressed in fibrotic hearts. We then found that FGF23 was expressed predominantly in cardiomyocytes, while FGFR1 was predominantly expressed in fibroblasts in the rat ventricle. Next, we added FGF23 and transforming growth factor (TGF)-ß1 (10-50 ng/mL of each) to isolated fibroblasts from normal adult rat ventricles and cultured them for three days. While FGF23 itself did not directly affect the expression levels of any fibrosis-related mRNAs, FGF23 enhanced the effect of TGF-ß1 on increasing the expression levels of α-smooth muscle actin (α-SMA) mRNA. This increase in xx-SMA mRNA levels due to the combination of TGF-ß1 and FGF23 was attenuated by the inhibition of FGFR1 or the knockdown of FGFR1 in fibroblasts. Thus, FGF23 synergistically promoted the activation of fibroblasts with TGF-ß1, transforming fibroblasts into myofibroblasts via FGFR1. Thus, we identified FGF23 as a paracrine factor secreted from cardiomyocytes to promote cardiac fibrosis under conditions in which TGF-ß1 is activated. FGF23 could be a possible target to prevent fibrosis following myocardial hypertrophy.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Cardiopatias/patologia , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Actinas/genética , Actinas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrose , Cardiopatias/metabolismo , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
3.
Am J Physiol Cell Physiol ; 316(5): C583-C604, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30758993

RESUMO

Mitochondrial fragmentation frequently occurs in chronic pathological conditions as seen in various human diseases. In fact, abnormal mitochondrial morphology and mitochondrial dysfunction are hallmarks of heart failure (HF) in both human patients and HF animal models. A link between mitochondrial fragmentation and cardiac pathologies has been widely proposed, but the physiological relevance of mitochondrial fission and fusion in the heart is still unclear. Recent studies have increasingly shown that posttranslational modifications (PTMs) of fission and fusion proteins are capable of directly modulating the stability, localization, and/or activity of these proteins. These PTMs include phosphorylation, acetylation, ubiquitination, conjugation of small ubiquitin-like modifier proteins, O-linked-N-acetyl-glucosamine glycosylation, and proteolysis. Thus, understanding the PTMs of fission and fusion proteins may allow us to understand the complexities that determine the balance of mitochondrial fission and fusion as well as mitochondrial function in various cell types and organs including cardiomyocytes and the heart. In this review, we summarize present knowledge regarding the function and regulation of mitochondrial fission and fusion in cardiomyocytes, specifically focusing on the PTMs of each mitochondrial fission/fusion protein. We also discuss the molecular mechanisms underlying abnormal mitochondrial morphology in HF and their contributions to the development of cardiac diseases, highlighting the crucial roles of PTMs of mitochondrial fission and fusion proteins. Finally, we discuss the future potential of manipulating PTMs of fission and fusion proteins as a therapeutic strategy for preventing and/or treating HF.


Assuntos
Cardiopatias/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Cardiopatias/genética , Humanos , Proteínas Mitocondriais/genética
4.
Arch Biochem Biophys ; 663: 276-287, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30684463

RESUMO

Recent discoveries of the molecular identity of mitochondrial Ca2+ influx/efflux mechanisms have placed mitochondrial Ca2+ transport at center stage in views of cellular regulation in various cell-types/tissues. Indeed, mitochondria in cardiac muscles also possess the molecular components for efficient uptake and extraction of Ca2+. Over the last several years, multiple groups have taken advantage of newly available molecular information about these proteins and applied genetic tools to delineate the precise mechanisms for mitochondrial Ca2+ handling in cardiomyocytes and its contribution to excitation-contraction/metabolism coupling in the heart. Though mitochondrial Ca2+ has been proposed as one of the most crucial secondary messengers in controlling a cardiomyocyte's life and death, the detailed mechanisms of how mitochondrial Ca2+ regulates physiological mitochondrial and cellular functions in cardiac muscles, and how disorders of this mechanism lead to cardiac diseases remain unclear. In this review, we summarize the current controversies and discrepancies regarding cardiac mitochondrial Ca2+ signaling that remain in the field to provide a platform for future discussions and experiments to help close this gap.


Assuntos
Cálcio/metabolismo , Homeostase , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Trifosfato de Adenosina/biossíntese , Sinalização do Cálcio , Humanos , Transporte de Íons , Miócitos Cardíacos/metabolismo
5.
Heart Vessels ; 34(3): 545-555, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30386918

RESUMO

Fatty acid (FA) oxidation is impaired and glycolysis is promoted in the damaged heart. However, the factor(s) in the early stages of myocardial metabolic impairment remain(s) unclear. C57B6 mice were subcutaneously administered monocrotaline (MCT) in doses of 0.3 mg/g body weight twice a week for 3 or 6 weeks. Right and left ventricles at 3 and 6 weeks after administration were subjected to capillary electrophoresis-mass spectrometry metabolomic analysis. We also examined mRNA and protein levels of key metabolic molecules. Although no evidence of PH and right ventricular failure was found in the MCT-administered mice by echocardiographic and histological analyzes, the expression levels of stress markers such as TNFα and IL-6 were increased in right and left ventricles even at 3 weeks, suggesting that there was myocardial damage. Metabolites in the tricarboxylic acid (TCA) cycle were decreased and those in glycolysis were increased at 6 weeks. The expression levels of FA oxidation-related factors were decreased at 6 weeks. The phosphorylation level of pyruvate dehydrogenase (PDH) was significantly decreased at 3 weeks. FA oxidation and the TCA cycle were down-regulated, whereas glycolysis was partially up-regulated by MCT-induced myocardial damage. PDH activation preceded these alterations, suggesting that PDH activation is one of the earliest events to compensate for a subtle metabolic impairment from myocardial damage.


Assuntos
Cardiomiopatias/metabolismo , Regulação para Baixo , Ácidos Graxos/metabolismo , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Animais , Western Blotting , Cardiomiopatias/induzido quimicamente , Modelos Animais de Doenças , Ventrículos do Coração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monocrotalina/toxicidade , Miocárdio/patologia , Oxirredução
6.
Ann Vasc Surg ; 49: 168-178, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29501904

RESUMO

BACKGROUND: Previous research has revealed that patent vein grafts lose their venous identity Eph-B4 but do not gain arterial identity ephrin-B2 during adaptation to the arterial circulation, and vascular identity marker, for example, the Eph-B4 signaling is a critical determinant of venous wall thickness of vein grafts. But what is the remodeling pattern, especially the remodeling pattern of vascular identity in the venous segment of arteriovenous shunt at a late stage postoperation has not been fully explored. This study was conducted to characterize the remodeling pattern of shear stress, vascular identity, structural composition and morphology, and transcriptional profiles in jugular segment of carotid-jugular (CJ) shunt and/or pulmonary artery (PA), which delivers an increased amount of mixed blood at a late stage postoperation in adult rats. METHODS: CJ shunt was created in adult Wistar rats via end-to-end anastomosis of carotid artery (CA) and jugular vein (JV). At the time of 15 weeks, after hemodynamics test, remodeled jugular segment of CJ shunt, PA, and sham-operated corresponding vessels were isolated. Reverse transcription polymerase chain reaction, microarray, western blot, immunohistochemistry experiments, and morphology analyses were performed. RESULTS: CJ shunt shear stresses have been patterned to some sort of balance with no significant difference in shear stress between carotid segment and jugular segment (P > 0.05). Immunohistochemical analysis reveals that venous identity marker Eph-B4 is lost, but arterial identity markers ephrin-B2 and regulator of G-protein signaling 5 are gained in jugular segment of CJ shunt (P < 0.01), and these 2 arterial identity markers further strengthened in PA (P < 0.01) in shunted rats compared with controls. Jugular segment of CJ shunt undergoes significant intimal hyperplasia with strong expression of smooth muscle cell markers (P < 0.05) and demonstrates a distinct transcriptional profiles which reveals that transcripts of 5 arterial markers are significantly upregulated (P < 0.05 or < 0.01) compared with sham-operated JV; among them, G-protein signaling 5 is exactly the gene with the largest fold change (10.14-fold) in all genes tested by microarray experiment. CONCLUSIONS: Venous identity is lost, but arterial identity is gained in jugular segment of CJ shunt and arterial identity further strengthened in PA in adult shunted rats during late adaptation.


Assuntos
Artérias Carótidas/cirurgia , Veias Jugulares/cirurgia , Artéria Pulmonar/cirurgia , Remodelação Vascular , Anastomose Cirúrgica , Animais , Biópsia , Western Blotting , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Artérias Carótidas/fisiopatologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Hemodinâmica , Imuno-Histoquímica , Veias Jugulares/metabolismo , Veias Jugulares/patologia , Veias Jugulares/fisiopatologia , Masculino , Modelos Animais , Análise de Sequência com Séries de Oligonucleotídeos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Proteínas RGS/genética , Proteínas RGS/metabolismo , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptor EphB2/genética , Receptor EphB2/metabolismo , Receptor EphB4/genética , Receptor EphB4/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Mecânico , Fatores de Tempo , Transcriptoma , Ultrassonografia Doppler em Cores
7.
Physiol Rep ; 5(15)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28784851

RESUMO

The effects of heat stress on the morphological properties and intracellular signaling of innervated and denervated soleus muscles were investigated. Heat stress was applied to rats by immersing their hindlimbs in a warm water bath (42°C, 30 min/day, every other day following unilateral denervation) under anesthesia. During 14 days of experimental period, heat stress for a total of seven times promoted growth-related hypertrophy in sham-operated muscles and attenuated atrophy in denervated muscles. In denervated muscles, the transcription of ubiquitin ligase, atrogin-1/muscle atrophy F-box (Atrogin-1), and muscle RING-finger protein-1 (MuRF-1), genes was upregulated and ubiquitination of proteins was also increased. Intermittent heat stress inhibited the upregulation of Atrogin-1, but not MuRF-1 transcription. And the denervation-caused reduction in phosphorylated protein kinase B (Akt), 70-kDa heat-shock protein (HSP70), and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which are negative regulators of Atrogin-1 and MuRF-1 transcription, was mitigated. In sham-operated muscles, repeated application of heat stress did not affect Atrogin-1 and MuRF-1 transcription, but increased the level of phosphorylated Akt and HSP70, but not PGC-1α Furthermore, the phosphorylation of Akt and ribosomal protein S6, which is known to stimulate protein synthesis, was increased immediately after a single heat stress particularly in the sham-operated muscles. The effect of a heat stress was suppressed in denervated muscles. These results indicated that the beneficial effects of heat stress on the morphological properties of muscles were brought regardless of innervation. However, the responses of intracellular signaling to heat stress were distinct between the innervated and denervated muscles.


Assuntos
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Estresse Fisiológico , Animais , Temperatura Corporal , Proteínas de Choque Térmico HSP70/metabolismo , Temperatura Alta , Masculino , Músculo Esquelético/inervação , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
J Thorac Cardiovasc Surg ; 154(5): 1742-1753.e8, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28755882

RESUMO

OBJECTIVE: A rat model of left atrial stenosis-associated pulmonary hypertension due to left heart diseases was prepared to elucidate its mechanism. METHODS: Five-week-old Sprague-Dawley rats were randomly divided into 2 groups: left atrial stenosis and sham-operated control. Echocardiography was performed 2, 4, 6, and 10 weeks after surgery, and cardiac catheterization and organ excision were subsequently performed at 10 weeks after surgery. RESULTS: Left ventricular inflow velocity, measured by echocardiography, significantly increased in the left atrial stenosis group compared with that in the sham-operated control group (2.2 m/s, interquartile range [IQR], 1.9-2.2 and 1.1 m/s, IQR, 1.1-1.2, P < .01), and the right ventricular pressure-to-left ventricular systolic pressure ratio significantly increased in the left atrial stenosis group compared with the sham-operated control group (0.52, IQR, 0.54-0.60 and 0.22, IQR, 0.15-0.27, P < .01). The right ventricular weight divided by body weight was significantly greater in the left atrial stenosis group than in the sham-operated control group (0.54 mg/g, IQR, 0.50-0.59 and 0.39 mg/g, IQR, 0.38-0.43, P < .01). Histologic examination revealed medial hypertrophy of the pulmonary vein was thickened by 1.6 times in the left atrial stenosis group compared with the sham-operated control group. DNA microarray analysis and real-time polymerase chain reaction revealed that transforming growth factor-ß mRNA was significantly elevated in the left atrial stenosis group. The protein levels of transforming growth factor-ß and endothelin-1 were increased in the lung of the left atrial stenosis group by Western blot analyses. CONCLUSIONS: We successfully established a novel, feasible rat model of pulmonary hypertension due to left heart diseases by generating left atrial stenosis. Although pulmonary hypertension was moderate, the pulmonary hypertension due to left heart diseases model rats demonstrated characteristic intrapulmonary venous arterialization and should be used to further investigate the mechanism of pulmonary hypertension due to left heart diseases.


Assuntos
Átrios do Coração , Ventrículos do Coração , Hipertensão Pulmonar , Veias Pulmonares , Animais , Constrição Patológica , Modelos Animais de Doenças , Ecocardiografia/métodos , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/fisiopatologia , Circulação Pulmonar , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/patologia , Veias Pulmonares/fisiopatologia , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/diagnóstico por imagem
9.
PLoS One ; 12(1): e0169564, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28068381

RESUMO

Interstitial myocardial fibrosis is one of the factors responsible for dysfunction of the heart. However, how interstitial fibrosis affects cardiac function and excitation-contraction coupling (E-C coupling) has not yet been clarified. We developed an animal model of right ventricular (RV) hypertrophy with fibrosis by pulmonary artery (PA) banding in rats. Two, four, and six weeks after the PA-banding operation, the tension and intracellular Ca2+ concentration of RV papillary muscles were simultaneously measured (n = 33). The PA-banding rats were clearly divided into two groups by the presence or absence of apparent interstitial fibrosis in the papillary muscles: F+ or F- group, respectively. The papillary muscle diameter and size of myocytes were almost identical between F+ and F-, although the RV free wall weight was heavier in F+ than in F-. F+ papillary muscles exhibited higher stiffness, lower active tension, and lower Ca2+ responsiveness compared with Sham and F- papillary muscles. In addition, we found that the time to peak Ca2+ had the highest correlation coefficient to percent of fibrosis among other parameters, such as RV weight and active tension of papillary muscles. The phosphorylation level of troponin I in F+ was significantly higher than that in Sham and F-, which supports the idea of lower Ca2+ responsiveness in F+. We also found that connexin 43 in F+ was sparse and disorganized in the intercalated disk area where interstitial fibrosis strongly developed. In the present study, the RV papillary muscles obtained from the PA-banding rats enabled us to directly investigate the relationship between fibrosis and cardiac dysfunction, the impairment of E-C coupling in particular. Our results suggest that interstitial fibrosis worsens cardiac function due to 1) the decrease in Ca2+ responsiveness and 2) the asynchronous activation of each cardiac myocyte in the fibrotic preparation due to sparse cell-to-cell communication.


Assuntos
Acoplamento Excitação-Contração , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Artéria Pulmonar/fisiopatologia , Equorina/metabolismo , Animais , Biomarcadores , Cálcio/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Fibrose , Expressão Gênica , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Masculino , Potenciais da Membrana , Músculos Papilares/patologia , Músculos Papilares/fisiopatologia , Fosforilação , Ratos , Troponina I/metabolismo
10.
Int J Cardiol ; 228: 821-827, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27888761

RESUMO

BACKGROUND: Thrombin is a serine protease known to be the final product of the coagulation cascade. However, thrombin plays other physiological roles in processes such as gastric contractions and vessel wound healing, and a state of coagulability is increased in patients with dilated cardiomyopathy (DCM). In this study, we investigate the role of thrombin in the pathogenesis of DCM. The purpose of this study is to clarify the role of thrombin in the pathogenesis of DCM and investigate the possibility of treatment against DCM by thrombin inhibition. METHODS: We investigated the expression of thrombin in the left ventricles of five patients with DCM who underwent the Batista operation and four patients without heart disease. Furthermore, we investigated the involvement of thrombin in the development of DCM using knock-in mice with a deletion mutation of cardiac troponin T that causes human DCM (∆K210 knock-in mouse) (B6;129-Tnnt2tm2Mmto) and assessed the effects of a direct thrombin inhibitor, dabigatran on ∆K210 knock-in mice using echocardiographic examinations, the Kaplan-Meier method and Western blotting. RESULTS: The immunohistochemical analysis showed a strong thrombin expression in the DCM patients compared to the patients without heart disease. In immunohistochemical analysis, a strong thrombin expression was observed in the heart tissues analysis in the ∆K210 knock-in mice. Dabigatran administration significantly improved fractional shortening according to the echocardiographic examination and the survival outcomes in ∆K210 knock-in mice. CONCLUSION: Tissue thrombin is involved in the pathogenesis of DCM and thrombin inhibition can be beneficial for the treatment of DCM.


Assuntos
Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/metabolismo , Trombina/metabolismo , Animais , Antitrombinas/uso terapêutico , Cardiomiopatia Dilatada/patologia , Estudos de Casos e Controles , Dabigatrana/uso terapêutico , Modelos Animais de Doenças , Humanos , Camundongos
11.
Muscle Nerve ; 54(4): 788-91, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27227343

RESUMO

INTRODUCTION: Disuse-induced skeletal muscle atrophy is a serious concern; however, there is not an effective mouse model to elucidate the molecular mechanisms. We developed a noninvasive atrophy model in mice. METHODS: After the ankle joints of mice were bandaged into a bilateral plantar flexed position, either bilateral or unilateral hindlimbs were immobilized by wrapping in bonsai steel wire. RESULTS: After 3, 5, or 10 days of immobilization of the hip, knee, and ankle, the weight of the soleus and plantaris muscles decreased significantly in both bilateral and unilateral immobilization. MAFbx/atrogin-1 and MuRF1 mRNA was found to have significantly increased in both muscles, consistent with disuse-induced atrophy. Notably, the procedure did not result in either edema or necrosis in the fixed hindlimbs. CONCLUSIONS: This method allows repeated, direct access to the immobilized muscle, making it a useful procedure for concurrent application and assessment of various therapeutic interventions. Muscle Nerve 54: 788-791, 2016.


Assuntos
Modelos Animais de Doenças , Imobilização/efeitos adversos , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Atrofia Muscular/fisiopatologia , Animais , Imobilização/métodos , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
12.
PLoS One ; 11(2): e0148666, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863419

RESUMO

BACKGROUND: Hepatic fibrosis progresses with right heart failure, and becomes cardiac cirrhosis in a severe case. Although its causal factor still remains unclear. Here we evaluated the progression of hepatic fibrosis using a pulmonary artery banding (PAB)-induced right heart failure model and investigated whether cardiac output (CO) is responsible for the progression of hepatic fibrosis. METHODS AND RESULTS: Five-week-old Sprague-Dawley rats divided into the PAB and sham-operated control groups. After 4 weeks from operation, we measured CO by echocardiography, and hepatic fibrosis ratio by pathological examination using a color analyzer. In the PAB group, CO was significantly lower by 48% than that in the control group (78.2±27.6 and 150.1±31.2 ml/min, P<0.01). Hepatic fibrosis ratio and serum hyaluronic acid, an index of hepatic fibrosis, were significantly increased in the PAB group than those in the control group (7.8±1.7 and 1.0±0.2%, P<0.01, 76.2±27.5 and 32.7±7.5 ng/ml, P<0.01). Notably, the degree of hepatic fibrosis significantly correlated a decrease in CO. Immunohistological analysis revealed that hepatic stellate cells were markedly activated in hypoxic areas, and HIF-1α positive hepatic cells were increased in the PAB group. Furthermore, by real-time PCR analyses, transcripts of profibrotic and fibrotic factors (TGF-ß1, CTGF, procollargen I, procollargen III, MMP 2, MMP 9, TIMP 1, TIMP 2) were significantly increased in the PAB group. In addition, western blot analyses revealed that the protein level of HIF-1α was significantly increased in the PAB group than that in the control group (2.31±0.84 and 1.0±0.18 arbitrary units, P<0.05). CONCLUSIONS: Our study demonstrated that low CO and tissue hypoxia were responsible for hepatic fibrosis in right failure heart model rats.


Assuntos
Baixo Débito Cardíaco/complicações , Insuficiência Cardíaca/complicações , Cirrose Hepática/etiologia , Animais , Baixo Débito Cardíaco/sangue , Hipóxia Celular , Modelos Animais de Doenças , Expressão Gênica , Insuficiência Cardíaca/sangue , Ácido Hialurônico/sangue , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fígado/patologia , Cirrose Hepática/sangue , Masculino , Miofibroblastos/patologia , Ratos Sprague-Dawley
13.
Am J Physiol Heart Circ Physiol ; 310(1): H92-103, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519028

RESUMO

Sarcolipin (SLN) is a small proteolipid and a regulator of sarco(endo)plasmic reticulum Ca(2+)-ATPase. In heart tissue, SLN is exclusively expressed in the atrium. Previously, we inserted Cre recombinase into the endogenous SLN locus by homologous recombination and succeeded in generating SLN-Cre knockin (Sln(Cre/+)) mice. This Sln(Cre/+) mouse can be used to generate an atrium-specific gene-targeting mutant, and it is based on the Cre-loxP system. In the present study, we used adult Sln(Cre/+) mice atria and analyzed the effects of heterozygous SLN deletion by Cre knockin before use as the gene targeting mouse. Both SLN mRNA and protein levels were decreased in Sln(Cre/+) mouse atria, but there were no morphological, physiological, or molecular biological abnormalities. The properties of contractility and Ca(2+) handling were similar to wild-type (WT) mice, and expression levels of several stress markers and sarcoplasmic reticulum-related protein levels were not different between Sln(Cre/+) and WT mice. Moreover, there was no significant difference in sarco(endo)plasmic reticulum Ca(2+)-ATPase activity between the two groups. We showed that Sln(Cre/+) mice were not significantly different from WT mice in all aspects that were examined. The present study provides basic characteristics of Sln(Cre/+) mice and possibly information on the usefulness of Sln(Cre/+) mice as an atrium-specific gene-targeting model.


Assuntos
Deleção de Genes , Heterozigoto , Proteínas Musculares/genética , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Proteolipídeos/genética , Função Ventricular Esquerda/genética , Agonistas Adrenérgicos beta/farmacologia , Animais , Sinalização do Cálcio/genética , Feminino , Fibrose , Genótipo , Isoproterenol/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/deficiência , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fenótipo , Proteolipídeos/deficiência , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
14.
Physiol Rep ; 2(7)2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25347856

RESUMO

Adverse left ventricular (LV) remodeling after acute myocardial infarction is characterized by LV dilatation and development of a fibrotic scar, and is a critical factor for the prognosis of subsequent development of heart failure. Although myofiber organization is recognized as being important for preserving physiological cardiac function and structure, the anatomical features of injured myofibers during LV remodeling have not been fully defined. In a mouse model of ischemia-reperfusion (I/R) injury induced by left anterior descending coronary artery ligation, our previous histological assays demonstrated that broad fibrotic scarring extended from the initial infarct zone to the remote zone, and was clearly demarcated along midcircumferential myofibers. Additionally, no fibrosis was observed in longitudinal myofibers in the subendocardium and subepicardium. However, a histological analysis of tissue sections does not adequately indicate myofiber injury distribution throughout the entire heart. To address this, we investigated patterns of scar formation along myofibers using three-dimensional (3D) images obtained from multiple tissue sections from mouse hearts subjected to I/R injury. The fibrotic scar area observed in the 3D images was consistent with the distribution of the midcircumferential myofibers. At the apex, the scar formation tracked along the myofibers in an incomplete C-shaped ring that converged to a triangular shape toward the end. Our findings suggest that myocyte injury after transient coronary ligation extends along myofibers, rather than following the path of coronary arteries penetrating the myocardium. The injury pattern observed along myofibers after I/R injury could be used to predict prognoses for patients with myocardial infarction.

15.
Cell Calcium ; 55(1): 17-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24290743

RESUMO

The Ca(2+) content in the sarcoplasmic reticulum (SR) determines the amount of Ca(2+) released, thereby regulating the magnitude of Ca(2+) transient and contraction in cardiac muscle. The Ca(2+) content in the SR is known to be regulated by two factors: the activity of the Ca(2+) pump (SERCA) and Ca(2+) leak through the ryanodine receptor (RyR). However, the direct relationship between the SERCA activity and Ca(2+) leak has not been fully investigated in the heart. In the present study, we evaluated the role of the SERCA activity in Ca(2+) leak from the SR using a novel saponin-skinned method combined with transgenic mouse models in which the SERCA activity was genetically modulated. In the SERCA overexpression mice, the Ca(2+) uptake in the SR was significantly increased and the Ca(2+) transient was markedly increased. However, Ca(2+) leak from the SR did not change significantly. In mice with overexpression of a negative regulator of SERCA, sarcolipin, the Ca(2+) uptake by the SR was significantly decreased and the Ca(2+) transient was markedly decreased. Again, Ca(2+) leak from the SR did not change significantly. In conclusion, the selective modulation of the SERCA activity modulates Ca(2+) uptake, although it does not change Ca(2+) leak from the SR.


Assuntos
Cálcio/metabolismo , Miocárdio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Hemodinâmica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Proteínas Musculares/metabolismo , Contração Miocárdica/fisiologia , Miocárdio/patologia , Miocárdio/ultraestrutura , Proteolipídeos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Regulação para Cima
16.
J Mol Cell Cardiol ; 63: 69-78, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23863340

RESUMO

It has been reported that the Frank-Starling mechanism is coordinately regulated in cardiac muscle via thin filament "on-off" equilibrium and titin-based lattice spacing changes. In the present study, we tested the hypothesis that the deletion mutation ΔK210 in the cardiac troponin T gene shifts the equilibrium toward the "off" state and accordingly attenuate the sarcomere length (SL) dependence of active force production, via reduced cross-bridge formation. Confocal imaging in isolated hearts revealed that the cardiomyocytes were enlarged, especially in the longitudinal direction, in ΔK210 hearts, with striation patterns similar to those in wild type (WT) hearts, suggesting that the number of sarcomeres is increased in cardiomyocytes but the sarcomere length remains unaltered. For analysis of the SL dependence of active force, skinned muscle preparations were obtained from the left ventricle of WT and knock-in (ΔK210) mice. An increase in SL from 1.90 to 2.20µm shifted the mid-point (pCa50) of the force-pCa curve leftward by ~0.21pCa units in WT preparations. In ΔK210 muscles, Ca(2+) sensitivity was lower by ~0.37pCa units, and the SL-dependent shift of pCa50, i.e., ΔpCa50, was less pronounced (~0.11pCa units), with and without protein kinase A treatment. The rate of active force redevelopment was lower in ΔK210 preparations than in WT preparations, showing blunted thin filament cooperative activation. An increase in thin filament cooperative activation upon an increase in the fraction of strongly bound cross-bridges by MgADP increased ΔpCa50 to ~0.21pCa units. The depressed Frank-Starling mechanism in ΔK210 hearts is the result of a reduction in thin filament cooperative activation.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Deleção de Sequência , Troponina T/genética , Difosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Troponina T/metabolismo
17.
Biochem Biophys Res Commun ; 433(2): 188-93, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23454381

RESUMO

Adrenoceptor stimulation is a key determinant of cardiac excitation-contraction coupling mainly through the activation of serine/threonine kinases. However, little is known about the role of protein tyrosine kinases (PTKs) activated by adrenergic signaling on cardiac excitation-contraction coupling. A cytoplasmic tyrosine residue in ß1-adrenoceptor is estimated to regulate Gs-protein binding affinity from crystal structure studies, but the signaling pathway leading to the phosphorylation of these residues is unknown. Here we show α1-adrenergic signaling inhibits ß-adrenergically activated Ca(2+) current, Ca(2+) transients and contractile force through phosphorylation of tyrosine residues in ß1-adrenoceptor by PTK. Our results indicate that inhibition of ß-adrenoceptor-mediated Ca(2+) elevation by α1-adrenoceptor-PTK signaling serves as an important regulatory feedback mechanism when the catecholamine level increases to protect cardiomyocytes from cytosolic Ca(2+) overload.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Acoplamento Excitação-Contração/efeitos dos fármacos , Músculos Papilares/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Tirosina/metabolismo , Adenilil Ciclases/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Citosol/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Humanos , Técnicas In Vitro , Isoproterenol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Músculos Papilares/fisiologia , Técnicas de Patch-Clamp , Fenilefrina/farmacologia , Fosforilação , Propanolaminas/farmacologia , Ratos
18.
Am J Physiol Heart Circ Physiol ; 303(1): H75-85, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22561297

RESUMO

Cardiac mammalian target of rapamycin (mTOR) is necessary and sufficient to prevent cardiac dysfunction in pathological hypertrophy. However, the role of cardiac mTOR in heart failure after ischemic injury remains undefined. To address this question, we used transgenic (Tg) mice with cardiac-specific overexpression of mTOR (mTOR-Tg mice) to study ischemia-reperfusion (I/R) injury in two animal models: 1) in vivo I/R injury with transient coronary artery ligation and 2) ex vivo I/R injury in Langendorff-perfused hearts with transient global ischemia. At 28 days after I/R, mortality was lower in mTOR-Tg mice than littermate control mice [wild-type (WT) mice]. Echocardiography and MRI demonstrated that global cardiac function in mTOR-Tg mice was preserved, whereas WT mice exhibited significant cardiac dysfunction. Masson's trichrome staining showed that 28 days after I/R, the area of interstitial fibrosis was smaller in mTOR-Tg mice compared with WT mice, suggesting that adverse left ventricular remodeling is inhibited in mTOR-Tg mice. In the ex vivo I/R model, mTOR-Tg hearts demonstrated improved functional recovery compared with WT hearts. Perfusion with Evans blue after ex vivo I/R yielded less staining in mTOR-Tg hearts than WT hearts, indicating that mTOR overexpression inhibited necrosis during I/R injury. Expression of proinflammatory cytokines, including IL-6 and TNF-α, in mTOR-Tg hearts was lower than in WT hearts. Consistent with this, IL-6 in the effluent post-I/R injury was lower in mTOR-Tg hearts than in WT hearts. These findings suggest that cardiac mTOR overexpression in the heart is sufficient to provide substantial cardioprotection against I/R injury and suppress the inflammatory response.


Assuntos
Traumatismo por Reperfusão Miocárdica/prevenção & controle , Serina-Treonina Quinases TOR/fisiologia , Animais , Autofagia , Western Blotting , Vasos Coronários/fisiologia , DNA/genética , DNA/isolamento & purificação , Fibrose , Técnicas In Vitro , Inflamação/genética , Inflamação/patologia , Ligadura , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Necrose , Perfusão , Reação em Cadeia da Polimerase em Tempo Real , Serina-Treonina Quinases TOR/genética , Ultrassonografia
19.
Am J Physiol Cell Physiol ; 299(6): C1256-66, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861467

RESUMO

Previous studies have suggested that inhibition of the mammalian target of rapamycin (mTOR) by rapamycin suppresses myocardial hypertrophy. However, the role of mTOR in the progression of cardiac dysfunction in pathological hypertrophy has not been fully defined. Interestingly, recent reports indicate that the inflammatory response, which plays an important role in the development of heart failure, is enhanced by rapamycin under certain conditions. Our aim in this study was to determine the influence of mTOR on pathological hypertrophy and to assess whether cardiac mTOR regulates the inflammatory response. We generated transgenic mice with cardiac-specific overexpression of wild-type mTOR (mTOR-Tg). mTOR-Tg mice were protected against cardiac dysfunction following left ventricular pressure overload induced by transverse aortic constriction (TAC) (P < 0.01) and had significantly less interstitial fibrosis compared with littermate controls (WT) at 4 wk post-TAC (P < 0.01). In contrast, TAC caused cardiac dysfunction in WT. At 1 wk post-TAC, the proinflammatory cytokines interleukin (IL)-1ß and IL-6 were significantly increased in WT mice but not in mTOR-Tg mice. To further characterize the effects of mTOR activation, we exposed HL-1 cardiomyocytes transfected with mTOR to lipopolysaccharide (LPS). mTOR overexpression suppressed LPS-induced secretion of IL-6 (P < 0.001), and the mTOR inhibitors rapamycin and PP242 abolished this inhibitory effect of mTOR. In addition, mTOR overexpression reduced NF-κB-regulated transcription in HL-1 cells. These data suggest that mTOR mitigates adverse outcomes of pressure overload and that this cardioprotective effect of mTOR is mediated by regulation of the inflammatory reaction.


Assuntos
Cardiomegalia/fisiopatologia , Coração/fisiopatologia , Miócitos Cardíacos/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Feminino , Humanos , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Interleucina-1beta/análise , Interleucina-6/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , Ratos , Serina-Treonina Quinases TOR/genética
20.
Interact Cardiovasc Thorac Surg ; 9(6): 951-5, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19776081

RESUMO

Left ventricular (LV) remodeling following myocardial infarction (MI) is considered to contribute to cardiac dysfunction. Though myofiber organization is a key component of cardiac structure, functional and anatomical features of injured myofiber during LV remodeling have not been fully defined. We investigated myocyte injury after acute MI in a mouse model. Mice were subjected to surgical coronary occlusion/reperfusion by left anterior descending coronary artery (LAD) ligation and examined at 1 week and 4 weeks post-MI. Magnetic resonance imaging (MRI) analysis demonstrated a significant decrease in systolic regional wall thickening (WT) in the border and remote zones at 4 weeks post-MI compared to that at 1 week post-MI (-86% in border zone, P<0.05, and -77% in remote zone, P<0.05). Histological assays demonstrated that a broad fibrotic scar extended from the initial infarct zone to the remote zone along mid-circumferential myofibers. Of particular note was the fact that no fibrosis was found in longitudinal myofibers in the epi- and endo-myocardium. This pattern of the scar formation coincided with the helical ventricular myocardial band (HVMB) model, introduced by Torrent-Guasp. MRI analysis demonstrated that the extension of the fibrotic scar along the band might account for the progression in cardiac dysfunction during LV remodeling.


Assuntos
Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Disfunção Ventricular Esquerda/etiologia , Remodelação Ventricular , Animais , Modelos Animais de Doenças , Fibrose , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Imagem Cinética por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Cardiovasculares , Infarto do Miocárdio/complicações , Infarto do Miocárdio/fisiopatologia , Fatores de Tempo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...