Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 65(12): 2530-2539, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28252294

RESUMO

Lactulose (4-O-ß-d-galactopyranosyl-d-fructofuranose) is a prebiotic sugar derived from the milk sugar lactose (4-O-ß-d-galactopyranosyl-d-glucopyranose). In our study we observed for the first time that known cellobiose 2-epimerases (CEs; EC 5.1.3.11) from mesophilic microorganisms were generally able to catalyze the isomerization reaction of lactose into lactulose. Commonly, CEs catalyze the C2-epimerization of d-glucose and d-mannose moieties at the reducing end of ß-1,4-glycosidic-linked oligosaccharides. Thus, epilactose (4-O-ß-d-galactopyranosyl-d-mannopyranose) is formed with lactose as substrate. So far, only four CEs, exclusively from thermophilic microorganisms, have been reported to additionally catalyze the isomerization reaction of lactose into lactulose. The specific isomerization activity of the seven CEs in this study ranged between 8.7 ± 0.1 and 1300 ± 37 pkat/mg. The results indicate that very likely all CEs are able to catalyze both the epimerization as well as the isomerization reaction, whereby the latter is performed at a comparatively much lower reaction rate.


Assuntos
Proteínas de Bactérias/química , Carboidratos Epimerases/química , Celobiose/metabolismo , Lactulose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Bacteroides/genética , Biocatálise , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Celobiose/química , Estabilidade Enzimática , Flavobacterium/enzimologia , Flavobacterium/genética , Lactose/metabolismo , Lactulose/química
2.
J Dairy Sci ; 98(10): 6767-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254523

RESUMO

The enzymatic production of lactulose was described recently through conversion of lactose by a thermophilic cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE). In the current study, we examined the application of CsCE for lactulose and epilactose production in milk (1.5% fat). The bioconversions were carried out in stirred reaction vessels at 2 different temperatures (50 and 8°C) at a scale of 25 mL volume. At 50°C, 2 highly different CsCE amounts were investigated for the time course of formation of lactulose and epilactose. The conversion of milk lactose (initial lactose content of 48.5 ± 2.1 g/L) resulted in a final yield of 57.7% (28.0 g/L) lactulose and 15.5% (7.49 g/L) epilactose in the case of the approximately 9.5-fold higher CsCE amount (39.5 µkat epilactose, 50°C) after 24 h. Another enzymatic lactose conversion was carried out at low 8°C, an industrially relevant temperature for milk processing. Although the CsCE originated from a thermophilic microorganism, it was still applicable at 8°C. This enzymatic lactose conversion resulted in 56.7% (27.5 g/L) lactulose and 13.6% (6.57 g/L) epilactose from initial milk lactose after 72 h. The time courses of lactose conversion by CsCE suggested that first epilactose formed and afterward lactulose via epilactose. To the best of our knowledge, this is the first time that an enzyme has produced lactulose directly in milk in situ at industrially relevant temperatures.


Assuntos
Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/metabolismo , Dissacarídeos/metabolismo , Firmicutes/enzimologia , Lactulose/metabolismo , Leite/química , Animais
3.
J Biotechnol ; 210: 27-37, 2015 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-26122513

RESUMO

The industrially utilised ß-galactosidases from Kluyveromyces spp. and Aspergillus spp. feature undesirable kinetic properties in praxis, such as an unsatisfactory lactose affinity (KM) and product inhibition (KI) by galactose. In this study, a metagenome library of about 1.3 million clones was investigated with a three-step activity-based screening strategy in order to find new ß-galactosidases with more favourable kinetic properties. Six novel metagenome ß-galactosidases (M1-M6) were found with an improved lactose hydrolysis performance in original milk when directly compared to the commercial ß-galactosidase from Kluyveromyces lactis (GODO-YNL2). The best metagenome candidate, called "M1", was recombinantly produced in Escherichia coli BL21(DE3) in a bioreactor (volume 35 L), resulting in a total ß-galactosidase M1 activity of about 1100 µkatoNPGal,37 °C L(-1). Since milk is a sensitive and complex medium, it has to be processed at 5-10 °C in the dairy industry. Therefore, the ß-galactosidase M1 was tested at 8 °C in milk and possessed a good stability (t1/2=21.8 d), a desirably low apparent KM,lactose,8 °C value of 3.8±0.7 mM and a high apparent KI,galactose,8 °C value of 196.6±55.5 mM. A lactose hydrolysis process (milk, 40 nkatlactose mLmilk,8 °C(-1)) was conducted at a scale of 0.5L to compare the performance of M1 with the commercial ß-galactosidase from K. lactis (GODO-YNL2). Lactose was completely (>99.99%) hydrolysed by M1 and to 99.6% (w/v) by K. lactis ß-galactosidase after 25 h process time. Thus, M1 was able to achieve the limit of <100 mg lactose per litre milk, which is recommended for dairy products labelled as "lactose-free".


Assuntos
Lactose/química , Metagenoma , beta-Galactosidase/isolamento & purificação , beta-Galactosidase/metabolismo , Animais , Reatores Biológicos , Estabilidade Enzimática , Escherichia coli/genética , Indústria Alimentícia , Biblioteca Gênica , Hidrólise , Cinética , Leite/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , beta-Galactosidase/química , beta-Galactosidase/genética
4.
J Dairy Sci ; 98(6): 3665-78, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25864053

RESUMO

A selected number of enzymes have recently been assigned to the emerging class of cellobiose 2-epimerases (CE). All CE convert lactose to the rare sugar epilactose, which is regarded as a new prebiotic. Within this study, the gene products of 2 potential CE genes originating from the mesophilic bacteria Cellulosilyticum lentocellum and Dysgonomonas gadei were recombinantly produced in Escherichia coli and purified by chromatography. The enzymes have been identified as novel CE by sequence analysis and biochemical characterizations. The biochemical characterizations included the determination of the molecular weight, the substrate spectrum, and the kinetic parameters, as well as the pH and temperature profiles in buffer and food matrices. Both identified CE epimerize cellobiose and lactose into the C2 epimerization products glucosylmannose and epilactose, respectively. The epimerization activity for lactose was maximal at pH 8.0 or 7.5 and 40°C in defined buffer systems for the CE from C. lentocellum and the CE from D. gadei, respectively. In addition, biotransformations of the foodstuff milk ultrafiltrate containing lactose were demonstrated. The CE from D. gadei was produced in a stirred-tank reactor (12 L) and purified using an automatic system. Enzyme production and purification in this scale indicates that a future upscaling of CE production is possible. The bioconversions of lactose in milk ultrafiltrate were carried out either in a batch process or in a continuously operated enzyme membrane reactor (EMR) process. Both processes ran at an industrially relevant low temperature of 8°C to reduce undesirable microbial growth. The enzyme was reasonably active at the low process temperature because the CE originated from a mesophilic organism. An epilactose yield of 29.9% was achieved in the batch process within 28 h of operation time. In the continuous EMR process, the epilactose yield in the product stream was lower, at 18.5%. However, the enzyme productivity was approximately 6 times higher because the continuous epilactose formation was carried out for about 6 d without further addition of biocatalyst. Within this time, 24g of epilactose in 2.8 L of permeate were produced. The batch and the EMR process showed that the milk ultrafiltrate, which is a sidestream of the milk protein production, might be upgraded to a dairy product of higher value by the enzymatic in situ production of epilactose.


Assuntos
Bactérias/enzimologia , Carboidratos Epimerases/metabolismo , Lactose/química , Leite/química , Animais , Carboidratos Epimerases/genética , Cinética , Prebióticos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...