Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
Ecotoxicol Environ Saf ; 174: 270-282, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30844667

RESUMO

Triclosan (TCS) is an antimicrobial preservative used in personal care products. Here, we have studied the phototoxicity, photogenotoxicity of TCS and its molecular mechanism involving p38 mitogen activated protein kinase (MAPK) pathway under UVB/sunlight exposure. We found that TCS showed photodegradation and photoproducts formation under UVB/sunlight. In silico study suggests that photosensitized TCS loses its preservative property due to the formation of its photoproducts. Photosensitized TCS induces significant O2•-, •OH generation and lipid peroxidation via type-I photochemical reaction mechanism under UVB/sunlight exposure. We performed intracellular study of TCS on human skin keratinocytes (HaCaT cell-line) under the ambient intensity of UVB (0.6 mW/cm2) and sunlight exposure. Significant intracellular ROS generation was observed through DCFH2-DA/DHE assays along with a significant reduction in cell viability through MTT and NRU assays in photosensitized TCS. Photosensitized TCS also induces endoplasmic reticulum (ER) stress as shown through ER-tracker/DAPI staining and Ca2+ release. It further induced cell cycle arrest through the sub-G1 phase augmentation and caused lysosomal/mitochondrial destabilization. Photogenotoxicity was shown through significant tail DNA, micronuclei and cyclobutane pyrimidine dimers (CPDs) formations. Cell signaling mechanism implicated upregulated expression of cleaved Caspase-3, Bax, phospho-p38, phospho-JNK and cytochrome C, thereby downregulated Bcl-2 expressions. Results advocate that TCS induces phototoxic effects via type I mediated photodynamic mechanism and activation of MAPK pathway. We conclude that photoexcited TCS may be deleterious to human health at the ambient environmental intensities of sunlight reaching at the earth's surface. Therefore, it may be replaced by alternative safe preservative.


Assuntos
Dano ao DNA , Queratinócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Luz Solar , Triclosan/toxicidade , Raios Ultravioleta , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Queratinócitos/enzimologia , Queratinócitos/patologia , Fotólise , Transdução de Sinais , Triclosan/efeitos da radiação
5.
Biomed Chromatogr ; 30(12): 2038-2043, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27352248

RESUMO

The pharmacokinetic profile of 99/411, a novel anti-malarial drug, was established in rats (12 mg/kg of body weight) and monkeys (20 mg/kg of body weight). Following oral administration, the presence of 99/411 was rapidly determined in rat plasma, tissues, urine, feces and monkey plasma using a validated LC-MS/MS method. The tissue distribution studies in rats indicated that the drug was partially distributed in all major tissues and plasma, and peak concentration levels were achieved within 0.5-4 h. Area under the curve in different rat tissues and plasma was found in order of blood > lung > intestine > heart > muscle > brain > kidney > spleen > liver. The total recoveries (within 86 h) of 99/411 were <0.0017% and <0.08% in urine and feces, respectively. The peak plasma concentration was 3499 ng/mL in rats after ~2 h of oral administration and 697-767 ng/mL in monkeys after ~6 h of oral administration. No plasma accumulation was observed in both male and female monkeys, even after multiple dosing. The preclinical pharmacokinetic profile and tissue distribution data are expected to assist in future clinical explorations of 99/411 as a promising anti-malarial agent.


Assuntos
Antimaláricos/farmacocinética , Cromatografia Líquida/métodos , Compostos Heterocíclicos/farmacocinética , Compostos de Espiro/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Área Sob a Curva , Macaca mulatta , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
6.
Toxicol Appl Pharmacol ; 297: 12-21, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26933830

RESUMO

The popularity of hair dyes use has been increasing regularly throughout the world as per the demand of hair coloring fashion trends and other cosmetic products. 2-Amino-3-hydroxypyridine (A132) is widely used as a hair dye ingredient around the world. We are reporting first time the phototoxicity mechanism of A132 under ambient environmental UV-B radiation. It showed maximum absorption in UV-B region (317 nm) and forms a photoproduct within an hour exposure of UV-B irradiation. Photocytotoxicity of A132 in human keratinocytes (HaCaT) was measured by mitochondrial (MTT), lysosomal (NRU) and LDH assays which illustrated the significant reduction in cell viability. The role of reactive oxygen species (ROS) generation for A132 phototoxicity was established photo- chemically as well as intracellularly. Noteworthy, formation of tail DNA (comet assay), micronuclei and cyclobutane pyrimidine dimers (CPDs) (immunocytochemistry) formation confirmed the photogenotoxic potential of dye. Cell cycle study (sub-G1peak) and staining with EB/AO revealed the cell cycle arrest and apoptosis. Further, mitochondrial mediated apoptosis was corroborated by reduced MMP, release of cytochrome c and upregulation of caspase-3. Release of mitochondrial Smac/DIABLO in cytoplasm demonstrated the caspase dependent apoptotic cell death by photolabile A132 dye. In-addition increased Bax/Bcl2 ratio again proved the apoptosis. Thus, study suggests that A132 induces photogenotoxicity, phototoxicity and apoptotic cell death through the involvement of Smac/DIABLO in mitochondrial apoptosis via caspase dependent manner. Therefore, the long term use of A132 dye and sunlight exposure jointly increased the oxidative stress in skin which causes premature hair loss, damage to progenitor cells of hair follicles.


Assuntos
Aminopiridinas , Tinturas para Cabelo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Queratinócitos/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Mutagênicos , Raios Ultravioleta , Aminopiridinas/efeitos da radiação , Aminopiridinas/toxicidade , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA , Tinturas para Cabelo/efeitos da radiação , Tinturas para Cabelo/toxicidade , Humanos , Queratinócitos/metabolismo , Queratinócitos/fisiologia , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mutagênicos/efeitos da radiação , Mutagênicos/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
7.
Biomaterials ; 84: 25-41, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26803409

RESUMO

Curcumin (Cur) has been demonstrated to have wide pharmacological window including anti-oxidant and anti-inflammatory properties. However, phototoxicity under sunlight exposure and poor biological availability limits its applicability. We have synthesized biodegradable and non-toxic polymer-poly (lactic-co-glycolic) acid (PLGA) encapsulated formulation of curcumin (PLGA-Cur-NPs) of 150 nm size range. Photochemically free curcumin generates ROS, lipid peroxidation and induces significant UVA and UVB mediated impaired mitochondrial functions leading to apoptosis/necrosis and cell injury in two different origin cell lines viz., mouse fibroblasts-NIH-3T3 and human keratinocytes-HaCaT as compared to PLGA-Cur-NPs. Molecular docking studies suggested that intact curcumin from nanoparticles, bind with BAX in BIM SAHB site and attenuate it to undergo apoptosis while upregulating anti-apoptotic genes like BCL2. Real time studies and western blot analysis with specific phosphorylation inhibitor of ERK1 and AKT1/2/3 confirm the involvement of ERK/AKT signaling molecules to trigger the survival cascade in case of PLGA-Cur-NPs. Our finding demonstrates that low level sustained release of curcumin from PLGA-Cur-NPs could be a promising way to protect the adverse biological interactions of photo-degradation products of curcumin upon the exposure of UVA and UVB. Hence, the applicability of PLGA-Cur-NPs could be suggested as prolonged radical scavenging ingredient in curcumin containing products.


Assuntos
Curcumina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Queratinócitos/efeitos da radiação , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta , Absorção de Radiação , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Citoproteção/efeitos dos fármacos , Citoproteção/efeitos da radiação , Quebras de DNA/efeitos dos fármacos , Quebras de DNA/efeitos da radiação , Liberação Controlada de Fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/enzimologia , Queratinócitos/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Simulação de Acoplamento Molecular , Células NIH 3T3 , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos da radiação
8.
J Hazard Mater ; 300: 415-425, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26223015

RESUMO

Paraphenylenediamine (PPD), a derivative of paranitroaniline has been most commonly used as an ingredient of oxidative hair dye and permanent tattoos. We have studied the phototoxic potential of PPD under ambient ultraviolet radiation. PPD is photodegraded and form a novel photoproduct under UV A exposure. PPD shows a concentration dependent decrease in cell viability of human Keratinocyte cells (HaCaT) through MTT and NRU test. Significant intracellular ROS generation was measured by DCFDA assay. It caused an oxidative DNA damage via single stranded DNA breaks, micronuclei and CPD formation. Both lysosome and mitochondria is main target for PPD induced apoptosis which was proved through lysosomal destabilization and release of cathepsin B by immunofluorescence, real time PCR and western blot analysis. Cathepsin B process BID to active tBID which induces the release of cytochrome C from mitochondria. Mitochondrial depolarization was reported through transmission electron microscopy. The cathepsin inhibitor reduced the release of cytochrome C in PPD treated cells. Thus study suggests that PPD leads to apoptosis via the involvement of lysosome and mitochondria both under ambient UV radiation. Therefore, photosensitizing nature of hair dye ingredients should be tested before coming to market as a cosmetic product for the safety of human beings.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Catepsina B/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Fenilenodiaminas/farmacologia , Antioxidantes/análise , Antioxidantes/metabolismo , Catepsina B/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Lisossomos/efeitos dos fármacos , Lisossomos/efeitos da radiação , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes para Micronúcleos , Espécies Reativas de Oxigênio/análise , Raios Ultravioleta
9.
Toxicol Lett ; 235(2): 84-95, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25800561

RESUMO

Sunscreen users have been increased, since excessive sun exposure increased the risk of skin diseases. Benzophenone (BP) and its derivatives are commonly used in sunscreens as UV blocker. Its photosafety is concern for human health. Our study showed the role of type-I and type-II radicals in activation of caspase 3 and phototoxicity of BP under sunlight/UV radiation. BP photodegraded and formed two photoproducts. BP generates reactive oxygen species (ROS) singlet oxygen ((1)O2), superoxide anion (O2˙(-)) and hydroxyl radical (˙OH) through type-I and type-II photodynamic mechanisms. Photocytotoxicity significantly reduced cell viability under sunlight, UVB and UVA. DCF fluorescence confirmed intracellular ROS generation. BP showed single strand DNA breakage, further proved by cyclobutane pyrimidine dimmers (CPDs) formation. Lipid peroxidation and LDH leakage were enhanced by BP. P21 dependent cell cycle study showed sub G1 population which advocates apoptotic cell death, confirmed through AO/EB and annexin V/PI staining. BP decreased mitochondrial membrane potential, death protein released and activated caspase. We proposed cytochrome c regulated caspase 3 dependent apoptosis in HaCaT cell line through down regulation of Bcl2/Bax ratio. Phototoxicity potential of its photoproducts is essential to understand its total environmental fate. Hence, we conclude that BP may replace from cosmetics preparation of topical application.


Assuntos
Apoptose/efeitos dos fármacos , Benzofenonas/toxicidade , Caspase 3/metabolismo , Quebras de DNA de Cadeia Simples , Queratinócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Protetores Solares/toxicidade , Apoptose/efeitos da radiação , Benzofenonas/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Radical Hidroxila/metabolismo , Queratinócitos/enzimologia , Queratinócitos/patologia , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Fotólise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Medição de Risco , Transdução de Sinais , Protetores Solares/efeitos da radiação , Superóxidos/metabolismo , Raios Ultravioleta , Proteína X Associada a bcl-2/metabolismo
10.
3 Biotech ; 5(3): 237-243, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28324288

RESUMO

Several organosulfur compounds are present in the crude oil, and are required to be removed before its processing into transport fuel. For this reason, biodesulfurization of thiophenic compounds has been studied extensively. However, studies on the sulfide compounds are scarce. In this paper, we describe desulfurization of a model sulfidic compound, dibenzyl sulfide (DBS) by an isolated Gordonia sp. IITR100. The reaction was accompanied with the formation of metabolites dibenzyl sulfoxide, dibenzyl sulfone and benzoic acid. Studies with recombinant E. coli revealed that enzyme DszC of this isolate metabolizes DBS into dibenzyl sulfoxide and dibenzyl sulfone, but the reaction downstream to it is mediated by some enzyme other than its DszA. In reactions where DBS and dibenzothiophene (DBT) were present together, both IITR100 and recombinant E. coli exhibited preference for the desulfurization of DBS over DBT. The newly identified capability of IITR100 for desulfurization of both thiophenic and sulfidic compounds suggests its potential use in improved desulfurization of petroleum fractions.

11.
J Photochem Photobiol B ; 142: 92-102, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25528193

RESUMO

Benz(a)anthracene (BA) is an ubiquitous environmental pollutant of polycyclic aromatic hydrocarbon's (PAHs) family. We showed superoxide (O2(-)) catalyzed BA photo modification and apoptosis in HaCaT keratinocytes under sunlight exposure. O2(-) generation was confirmed by quenching through superoxide dismutase (SOD). BA induced photocytotoxicity were investigated through MTT and NRU assay. We proposed DNA insults such as single and double strand breakage and CPDs formation which results in cell cycle arrest and apoptosis by photosensitized BA. BA induced apoptosis was caspase dependent and occurred through a mitochondrial pathway. Reduction of mitochondrial membrane potential, translocation of Bax to mitochondria and cytochrome c release favors involvement of mitochondria in BA phototoxicity. AO/EB double staining and TEM analysis also support apoptotic cell death. We propose a p21 regulated apoptosis via expression of Bax, and cleaved PARP under sunlight exposure. Thus, we conclude that it is imperative to avoid solar radiation during peak hr (between 11A.M. and 3P.M.) when the amount of solar radiation is high, in the light of DNA damage which may lead to mutation or skin cancer through photosensitized BA under sunlight exposure. Concomitantly, investigation is urgently required for the photosafety of BA photoproducts reaching in the environment through photomodification.


Assuntos
Apoptose/efeitos dos fármacos , Benzo(a)Antracenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Mitocôndrias/metabolismo , Superóxidos/química , Apoptose/efeitos da radiação , Benzo(a)Antracenos/análise , Benzo(a)Antracenos/química , Catálise , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos da radiação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Luz , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Superóxidos/metabolismo , Raios Ultravioleta , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
12.
Malar Res Treat ; 2014: 756965, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383231

RESUMO

Objective. The study aimed to evaluate the influences of coadministration of antiepileptic drugs (AEDs) on an antimalarial candidate 99/411 pharmacokinetic (PK) profile. Method. For this, single oral dose PK drug interaction studies were conducted between 99/411 and FDA approved AEDs, namely, Phenytoin (PHT), Carbamazepine (CBZ), and Gabapentin (GB) in both male and female SD rats, to assess the coadministered and intersexual influences on 99/411 PK profile. Results. Studies revealed that there were no significant alterations in the PK profile of 99/411 upon PHT and CBZ coadministration in both male and female rats, while systemic exposure of 99/411 was significantly increased by about 80% in female rats upon GB coadministration. In terms of AUC, there was an increase from 2471 ± 586 to 4560 ± 1396 ng·h/mL. Overall, it was concluded that simultaneous administration of AEDs with 99/411 excludes the requirements for dose adjustment, additional therapeutic monitoring, contraindication to concomitant use, and/or other measures to mitigate risk, except for GB coadministration in females. These findings are further helpful to predict such interactions in humans, when potentially applied through proper allometric scaling to extrapolate the data.

13.
Malar Res Treat ; 2014: 759392, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302132

RESUMO

Single dose pharmacokinetics study of 97/63 (IND191710, 2004), a trioxane antimalarial developed by Central Drug Research Institute, Lucknow, India, was studied in rats following intravenous and oral administration. Serum samples were analysed by HPLC-UV assay. Separation was achieved on a RP-18 column attached with a guard using acetonitrile : phosphate buffer (70 : 30% v/v) with UV detector at wavelength 244 nm. Serum samples were extracted with n-hexane. Two-compartment model without lag time and first-order elimination rate was considered to be the best fit to explain the generated oral and intravenous data. Method was sensitive with limit of quantification of 10 ng mL(-1). Recovery was >74%. Terminal half-life and area under curve (AUC) after administering single oral (72 mg kg(-1)) and intravenous (18 mg kg(-1)) doses were 10.61 h, 10.57 h, and 1268.97 ng h mL(-1), 2025.75 ng h mL(-1), respectively. After oral dose, 97/63 was rapidly absorbed attaining maximum concentration 229.24 ng mL(-1) at 1 h. Bioavailability of 97/63 was ~16%. The lower bioavailability of drug may be due to poor solubility and first-pass metabolism and can be improved by prodrug formation of 97/63.

14.
J Biomed Sci ; 21: 39, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24884571

RESUMO

BACKGROUND: Riboflavin (RF) or vitamin B2 is known to have neuroprotective effects. In the present study, we report the attenuation of the neuroprotective effects of RF under UV-B irradiation. Preconditioning of UV-B irradiated riboflavin (UV-B-RF) showed attenuated neuroprotective effects compared to that of RF in SH-SY5Y neuroblostoma cell line and primary cortical neurons in vitro and a rat model of cerebral ischemia in vivo. RESULTS: Results indicated that RF pretreatment significantly inhibited cell death and reduced LDH secretion compared to that of the UV-B-RF pretreatment in primary cortical neuron cultures subjected to oxygen glucose deprivation in vitro and cortical brain tissue subjected to ischemic injury in vivo. Further mechanistic studies using cortical neuron cultures revealed that RF treatment induced increased miR-203 expression which in turn inhibited c-Jun expression and increased neuronal cell survival. Functional assays clearly demonstrated that the UV-B-RF preconditioning failed to sustain the increased expression of miR-203 and the decreased levels of c-Jun, mediating the neuroprotective effects of RF. UV-B irradiation attenuated the neuroprotective effects of RF through modulation of the miR-203/c-Jun signaling pathway. CONCLUSION: Thus, the ability of UV-B to serve as a modulator of this neuroprotective signaling pathway warrants further studies into its role as a regulator of other cytoprotective/neuroprotective signaling pathways.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , MicroRNAs/biossíntese , Riboflavina/administração & dosagem , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , MicroRNAs/genética , Neuroblastoma/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Fármacos Neuroprotetores/administração & dosagem , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta
15.
Toxicology ; 314(2-3): 229-37, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24128752

RESUMO

Ketoprofen (KP) is a widely used nonsteroidal anti-inflammatory drug for the treatment of osteoarthritis and various rheumatic diseases. Currently, KP is applied topically on skin as gel to treat symptoms of pain and inflammation. We have studied the photomodification of KP under natural environmental conditions. KP generates reactive oxygen species (ROS) like ¹O2 through Type-II photodynamic reaction. ¹O2 mediated 2'-dGuO photodegradation, single and double strand breakage were significantly induced by photosensitized KP under sunlight/UV-R exposure. Significant intracellular ROS generation was measured through DCF-DA fluorescence. Linoleic acid photoperoxidation and role of ¹O2 were substantiated by using specific quencher like sodium azide. KP induced cell cycle arrest in G2/M phase and cell death through MTT assay. We found apoptosis as the pattern of cell death which was confirmed through caspase-3 activation, cytochrome-c release from mitochondria, up-regulation of Bax protein and phosphatidylserine translocation. Our RT-PCR result strongly supports our view point of apoptotic cell death through up-regulation of p21 and pro-apoptotic Bax genes expression. Mitochondrial depolarization and lysosomal destabilization were also parallel to apoptotic process. Therefore, much attention should be paid to the topical application of KP and sunlight exposure in the light of skin related photosensitivity and cancers.


Assuntos
Dano ao DNA/fisiologia , Dermatite Fototóxica/metabolismo , Cetoprofeno/toxicidade , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Oxigênio Singlete/metabolismo , Anti-Inflamatórios não Esteroides/toxicidade , Dano ao DNA/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Lisossomos/efeitos dos fármacos , Lisossomos/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Oxigênio Singlete/efeitos da radiação , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos
16.
Photochem Photobiol ; 89(3): 655-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23336807

RESUMO

This study aimed to analyze the phototoxic mechanism and photostability of quinine in human skin cell line A375 under ambient intensities of UVA (320-400 nm). Photosensitized quinine produced a photoproduct 6-methoxy-quinoline-4-ylmethyl-oxonium identified through LC-MS/MS. Generation of (1)O2, O2(•-), and (•)OH was measured and further substantiated through their respective quenchers. Photosensitized Quinine (Q) caused degradation of 2-deoxyguanosine, the most sensitive nucleotide to UV radiation. The intracellular ROS was increased in a concentration-dependent manner. Significant reduction in metabolic status measured in terms of cell viability (54%) at 25 µg mL(-1) was observed through MTT assay. Results of MTT assay accord NRU assay. Single strand DNA breaks and apoptosis were increased significantly (P < 0.01) as observed through comet assay and EB/AO double staining. Photosensitized quinine caused cells to arrest in G2 phase of cell cycle and induced apoptosis (5.08%) as revealed through FACS. Real-Time PCR showed upregulation of p21 (4.56 folds) and p53 (2.811 folds) genes expression. Thus, our study suggests that generation of reactive oxygen species by quinine under ambient intensity of UVA may result into deleterious phototoxic effects among human population.


Assuntos
Apoptose , Inibidor de Quinase Dependente de Ciclina p21/genética , Quinina/farmacologia , Pele/metabolismo , Proteína Supressora de Tumor p53/genética , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ensaio Cometa , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos da radiação , Humanos , Radical Hidroxila/metabolismo , Melanoma , Necrose , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Neoplasias Cutâneas , Superóxidos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta , Regulação para Cima
17.
Arzneimittelforschung ; 61(7): 425-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21899212

RESUMO

A sensitive, selective and specific LC-MS/ MS assay for simultaneous quantification of compound 97/78 and its active in vivo metabolite 97/63, a novel 1,2,4-trioxane antimalarial, in human plasma has been developed and validated using alpha-arteether as internal standard (IS). Extraction from plasma involves a simple protein precipitation method. The analytes were chromatographed on a Columbus C18 column with guard by isocratic elution with acetonitrile:ammonium acetate buffer (10 mM, pH 4.0) (80:20 v/v) as mobile phase at a flow rate of 0.45 mL min(-1) and analyzed in multiple reaction-monitoring (MRM) positive ion mode. The chromatographic run time was 4.0 min. The weighted (1/x2) calibration curves were linear over a range of 1.56-200 ng mL(-1) with correlation coefficients > 0.998. For both analytes, the limit of detection (LOD) and lower limit of quantification (LLOQ) were 0.5 ng mL(-1) and 1.56 ng mL(-1), respectively. The recovery of 97/78, 97/63 and IS from spiked control samples were > 90% and their matrix suppression obtained were < 8 %. The accuracy (% bias) and precision (%RSD) for both analytes were < 6.78%. Both analytes were stable after three freeze-thaw cycles (% deviation < 12.80), long-term for 30 days in plasma at -60 degrees C (% deviation < 14.38), for 8 h on bench top in plasma at ambient temperature (% deviation < 1.52) and also in the auto-sampler for 12 h (% deviation < 3.9%). The validated method was successfully applied to a protein binding study of compound 97/78 and metabolite 97/63 in human plasma. Furthermore, the validated method will be applicable to pharmacokinetics, bioavailability and metabolism in various clinical phases and in drug interaction studies.


Assuntos
Antimaláricos/sangue , Compostos Heterocíclicos com 1 Anel/sangue , Compostos de Espiro/sangue , Antimaláricos/farmacocinética , Calibragem , Cromatografia Líquida de Alta Pressão , Congelamento , Compostos Heterocíclicos com 1 Anel/farmacocinética , Humanos , Indicadores e Reagentes , Limite de Detecção , Ligação Proteica , Controle de Qualidade , Padrões de Referência , Reprodutibilidade dos Testes , Compostos de Espiro/farmacocinética , Espectrometria de Massas em Tandem
18.
J Pharm Pharmacol ; 62(5): 604-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20609062

RESUMO

OBJECTIVES: The aim of the study was to investigate the in-situ absorption kinetics, plasma protein binding and pharmacokinetic characteristics of a novel synthetic flavone derivative, S002-853, which shows pronounced antidiabetic and antidyslipidaemic activity. METHODS: Quantification of S002-853 in plasma was performed by the LC-MS/MS method and in-situ sample analysis was carried out by the HPLC-UV method. KEY FINDINGS: The absorption rate constant was 0.274/h in a mild alkaline environment, which S002-853 experiences in the intestine following oral dose administration. Plasma protein binding was found to be 26.37 +/- 2.58% at a concentration of 1 microg/ml. The pharmacokinetic parameters were determined in male rats after administration of a single 40 mg/kg oral dose and 10 mg/kg intravenous dose. The peak plasma concentration (C(max)) was found to be 60.93 ng/ml at 8 h after oral administration. Irregular concentration-time profiles with secondary peaks were observed after oral dose administration. The elimination half-life of the compound was 19.56 h and 16.30 h after oral and intravenous doses, respectively. Comparison of the AUC after oral and intravenous dosing of S002-853 indicates that only about 29.48% (bioavailability) of the oral dose reaches the systemic circulation. CONCLUSIONS: In-situ study of S002-853 shows slow absorption from the gastrointestinal tract. S002-853 also shows low plasma protein binding. The pharmacokinetic parameters after oral and intravenous dose reveal low oral bioavailability and high mean residence time.


Assuntos
Flavonas/farmacocinética , Hipoglicemiantes/farmacocinética , Hipolipemiantes/farmacocinética , Extratos Vegetais/síntese química , Syzygium/química , Animais , Área Sob a Curva , Disponibilidade Biológica , Flavonas/sangue , Flavonas/síntese química , Meia-Vida , Hipoglicemiantes/sangue , Hipoglicemiantes/síntese química , Hipolipemiantes/sangue , Hipolipemiantes/síntese química , Absorção Intestinal , Masculino , Ligação Proteica , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA