Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomics ; : e2200220, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012370

RESUMO

How cells regulate protein levels is a central question of biology. Over the past decades, molecular biology research has provided profound insights into the mechanisms and the molecular machinery governing each step of the gene expression process, from transcription to protein degradation. Recent advances in transcriptomics and proteomics have complemented our understanding of these fundamental cellular processes with a quantitative, systems-level perspective. Multi-omic studies revealed significant quantitative, kinetic and functional differences between the genome, transcriptome and proteome. While protein levels often correlate with mRNA levels, quantitative investigations have demonstrated a substantial impact of translation and protein degradation on protein expression control. In addition, protein-level regulation appears to play a crucial role in buffering protein abundances against undesirable mRNA expression variation. These findings have practical implications for many fields, including gene function prediction and precision medicine.

2.
Wellcome Open Res ; 8: 332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692131

RESUMO

Background: Unicorn™ software on Äkta liquid chromatography instruments outputs chromatography profiles of purified biological macromolecules. While the plots generated by the instrument software are very helpful to inspect basic chromatogram properties, they lack a range of useful annotation, customization and export options. Methods: We use the R Shiny framework to build an interactive app that facilitates the interpretation of chromatograms and the generation of figures for publications. Results: The app allows users to fit a baseline, to highlight selected fractions and elution volumes inside or under the plot (e.g. those used for downstream biochemical/biophysical/structural analysis) and to zoom into the plot. The app is freely available at https://ChromatoShiny.bio.ed.ac.uk. Conclusions: It requires no programming experience, so we anticipate that it will enable chromatography users to create informative, annotated chromatogram plots quickly and simply.

3.
Cell ; 186(9): 2018-2034.e21, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37080200

RESUMO

Functional genomic strategies have become fundamental for annotating gene function and regulatory networks. Here, we combined functional genomics with proteomics by quantifying protein abundances in a genome-scale knockout library in Saccharomyces cerevisiae, using data-independent acquisition mass spectrometry. We find that global protein expression is driven by a complex interplay of (1) general biological properties, including translation rate, protein turnover, the formation of protein complexes, growth rate, and genome architecture, followed by (2) functional properties, such as the connectivity of a protein in genetic, metabolic, and physical interaction networks. Moreover, we show that functional proteomics complements current gene annotation strategies through the assessment of proteome profile similarity, protein covariation, and reverse proteome profiling. Thus, our study reveals principles that govern protein expression and provides a genome-spanning resource for functional annotation.


Assuntos
Proteoma , Proteômica , Proteômica/métodos , Proteoma/metabolismo , Genômica/métodos , Genoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Mol Syst Biol ; 19(5): e9503, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36891684

RESUMO

Operons are transcriptional modules that allow bacteria to adapt to environmental changes by coordinately expressing the relevant set of genes. In humans, biological pathways and their regulation are more complex. If and how human cells coordinate the expression of entire biological processes is unclear. Here, we capture 31 higher-order co-regulation modules, which we term progulons, by help of supervised machine-learning on proteomics data. Progulons consist of dozens to hundreds of proteins that together mediate core cellular functions. They are not restricted to physical interactions or co-localisation. Progulon abundance changes are primarily controlled at the level of protein synthesis and degradation. Implemented as a web app at www.proteomehd.net/progulonFinder, our approach enables the targeted search for progulons of specific cellular processes. We use it to identify a DNA replication progulon and reveal multiple new replication factors, validated by extensive phenotyping of siRNA-induced knockdowns. Progulons provide a new entry point into the molecular understanding of biological processes.


Assuntos
Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo
5.
Proteomics ; 23(7-8): e2200013, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36349817

RESUMO

There are multiple reasons why the next generation of biological and medical studies require increasing numbers of samples. Biological systems are dynamic, and the effect of a perturbation depends on the genetic background and environment. As a consequence, many conditions need to be considered to reach generalizable conclusions. Moreover, human population and clinical studies only reach sufficient statistical power if conducted at scale and with precise measurement methods. Finally, many proteins remain without sufficient functional annotations, because they have not been systematically studied under a broad range of conditions. In this review, we discuss the latest technical developments in mass spectrometry (MS)-based proteomics that facilitate large-scale studies by fast and efficient chromatography, fast scanning mass spectrometers, data-independent acquisition (DIA), and new software. We further highlight recent studies which demonstrate how high-throughput (HT) proteomics can be applied to capture biological diversity, to annotate gene functions or to generate predictive and prognostic models for human diseases.


Assuntos
Proteômica , Biologia de Sistemas , Humanos , Proteômica/métodos , Proteínas/análise , Espectrometria de Massas/métodos , Software
8.
Mol Cell ; 82(3): 696-708.e4, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090599

RESUMO

We have used a combination of chemical genetics, chromatin proteomics, and imaging to map the earliest chromatin transactions during vertebrate cell entry into mitosis. Chicken DT40 CDK1as cells undergo synchronous mitotic entry within 15 min following release from a 1NM-PP1-induced arrest in late G2. In addition to changes in chromatin association with nuclear pores and the nuclear envelope, earliest prophase is dominated by changes in the association of ribonucleoproteins with chromatin, particularly in the nucleolus, where pre-rRNA processing factors leave chromatin significantly before RNA polymerase I. Nuclear envelope barrier function is lost early in prophase, and cytoplasmic proteins begin to accumulate on the chromatin. As a result, outer kinetochore assembly appears complete by nuclear envelope breakdown (NEBD). Most interphase chromatin proteins remain associated with chromatin until NEBD, after which their levels drop sharply. An interactive proteomic map of chromatin transactions during mitotic entry is available as a resource at https://mitoChEP.bio.ed.ac.uk.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Cromossomos , DNA/metabolismo , Linfoma de Células B/metabolismo , Proteínas Nucleares/metabolismo , Prófase , Proteoma , Proteômica , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Galinhas , Cromatina/genética , DNA/genética , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/patologia , Proteínas Nucleares/genética , Ligação Proteica , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Fatores de Tempo
9.
Mol Cell Proteomics ; 21(1): 100169, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742921

RESUMO

Comprehensive proteome analysis of rare cell phenotypes remains a significant challenge. We report a method for low cell number MS-based proteomics using protease digestion of mildly formaldehyde-fixed cells in cellulo, which we call the "in-cell digest." We combined this with averaged MS1 precursor library matching to quantitatively characterize proteomes from low cell numbers of human lymphoblasts. About 4500 proteins were detected from 2000 cells, and 2500 proteins were quantitated from 200 lymphoblasts. The ease of sample processing and high sensitivity makes this method exceptionally suited for the proteomic analysis of rare cell states, including immune cell subsets and cell cycle subphases. To demonstrate the method, we characterized the proteome changes across 16 cell cycle states (CCSs) isolated from an asynchronous TK6 cells, avoiding synchronization. States included late mitotic cells present at extremely low frequency. We identified 119 pseudoperiodic proteins that vary across the cell cycle. Clustering of the pseudoperiodic proteins showed abundance patterns consistent with "waves" of protein degradation in late S, at the G2&M border, midmitosis, and at mitotic exit. These clusters were distinguished by significant differences in predicted nuclear localization and interaction with the anaphase-promoting complex/cyclosome. The dataset also identifies putative anaphase-promoting complex/cyclosome substrates in mitosis and the temporal order in which they are targeted for degradation. We demonstrate that a protein signature made of these 119 high-confidence cell cycle-regulated proteins can be used to perform unbiased classification of proteomes into CCSs. We applied this signature to 296 proteomes that encompass a range of quantitation methods, cell types, and experimental conditions. The analysis confidently assigns a CCS for 49 proteomes, including correct classification for proteomes from synchronized cells. We anticipate that this robust cell cycle protein signature will be crucial for classifying cell states in single-cell proteomes.


Assuntos
Peptídeo Hidrolases , Proteômica , Contagem de Células , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Mitose , Proteômica/métodos
10.
Mol Cell ; 81(5): 1084-1099.e6, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33450211

RESUMO

Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/genética , Replicação do DNA , DNA Topoisomerases Tipo I/genética , DNA/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Reparo de DNA por Recombinação , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Camptotecina/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo I/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Células HeLa , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/farmacologia , Quinolinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Inibidores da Topoisomerase I/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Quinase 1 Polo-Like
11.
Nat Biotechnol ; 37(11): 1361-1371, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31690884

RESUMO

Assigning functions to the vast array of proteins present in eukaryotic cells remains challenging. To identify relationships between proteins, and thereby enable functional annotation of proteins, we determined changes in abundance of 10,323 human proteins in response to 294 biological perturbations using isotope-labeling mass spectrometry. We applied the machine learning algorithm treeClust to reveal functional associations between co-regulated human proteins from ProteomeHD, a compilation of our own data and datasets from the Proteomics Identifications database. This produced a co-regulation map of the human proteome. Co-regulation was able to capture relationships between proteins that do not physically interact or colocalize. For example, co-regulation of the peroxisomal membrane protein PEX11ß with mitochondrial respiration factors led us to discover an organelle interface between peroxisomes and mitochondria in mammalian cells. We also predicted the functions of microproteins that are difficult to study with traditional methods. The co-regulation map can be explored at www.proteomeHD.net .


Assuntos
Biologia Computacional/métodos , Proteoma/metabolismo , Proteômica/métodos , Bases de Dados de Proteínas , Regulação da Expressão Gênica , Humanos , Marcação por Isótopo , Aprendizado de Máquina , Espectrometria de Massas
12.
Mol Cell Proteomics ; 17(11): 2082-2090, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30042154

RESUMO

Genes are often coexpressed with their genomic neighbors, even if these are functionally unrelated. For small expression changes driven by genetic variation within the same cell type, non-functional mRNA coexpression is not propagated to the protein level. However, it is unclear if protein levels are also buffered against any non-functional mRNA coexpression accompanying large, regulated changes in the gene expression program, such as those occurring during cell differentiation. Here, we address this question by analyzing mRNA and protein expression changes for housekeeping genes across 20 mouse tissues. We find that a large proportion of mRNA coexpression is indeed non-functional and does not lead to coexpressed proteins. Chromosomal proximity of genes explains a proportion of this nonfunctional mRNA coexpression. However, the main driver of non-functional mRNA coexpression across mouse tissues is epigenetic similarity. Both factors together provide an explanation for why monitoring protein coexpression outperforms mRNA coexpression data in gene function prediction. Furthermore, this suggests that housekeeping genes translocating during evolution within genomic subcompartments might maintain their broad expression pattern.


Assuntos
Epigênese Genética , Proteômica , Transcriptoma/genética , Animais , Genoma , Camundongos , Família Multigênica , Especificidade de Órgãos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Mol Syst Biol ; 13(8): 937, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835372

RESUMO

Genes are not randomly distributed in the genome. In humans, 10% of protein-coding genes are transcribed from bidirectional promoters and many more are organised in larger clusters. Intriguingly, neighbouring genes are frequently coexpressed but rarely functionally related. Here we show that coexpression of bidirectional gene pairs, and closeby genes in general, is buffered at the protein level. Taking into account the 3D architecture of the genome, we find that co-regulation of spatially close, functionally unrelated genes is pervasive at the transcriptome level, but does not extend to the proteome. We present evidence that non-functional mRNA coexpression in human cells arises from stochastic chromatin fluctuations and direct regulatory interference between spatially close genes. Protein-level buffering likely reflects a lack of coordination of post-transcriptional regulation of functionally unrelated genes. Grouping human genes together along the genome sequence, or through long-range chromosome folding, is associated with reduced expression noise. Our results support the hypothesis that the selection for noise reduction is a major driver of the evolution of genome organisation.


Assuntos
Expressão Gênica , RNA Mensageiro/metabolismo , Biologia de Sistemas/métodos , Cromatina , Evolução Molecular , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Regiões Promotoras Genéticas , Processos Estocásticos , Transcrição Gênica
14.
Mol Biol Cell ; 28(5): 673-680, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057767

RESUMO

Ever-increasing numbers of quantitative proteomics data sets constitute an underexploited resource for investigating protein function. Multiprotein complexes often follow consistent trends in these experiments, which could provide insights about their biology. Yet, as more experiments are considered, a complex's signature may become conditional and less identifiable. Previously we successfully distinguished the general proteomic signature of genuine chromosomal proteins from hitchhikers using the Random Forests (RF) machine learning algorithm. Here we test whether small protein complexes can define distinguishable signatures of their own, despite the assumption that machine learning needs large training sets. We show, with simulated and real proteomics data, that RF can detect small protein complexes and relationships between them. We identify several complexes in quantitative proteomics results of wild-type and knockout mitotic chromosomes. Other proteins covary strongly with these complexes, suggesting novel functional links for later study. Integrating the RF analysis for several complexes reveals known interdependences among kinetochore subunits and a novel dependence between the inner kinetochore and condensin. Ribosomal proteins, although identified, remained independent of kinetochore subcomplexes. Together these results show that this complex-oriented RF (NanoRF) approach can integrate proteomics data to uncover subtle protein relationships. Our NanoRF pipeline is available online.


Assuntos
Aprendizado de Máquina , Complexos Multiproteicos/química , Proteômica/métodos , Adenosina Trifosfatases/química , Simulação por Computador , Proteínas de Ligação a DNA/química , Conjuntos de Dados como Assunto , Cinetocoros/química , Relação Estrutura-Atividade
15.
Trends Cell Biol ; 26(11): 800-803, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27651031

RESUMO

Proteomic studies find many proteins in unexpected cellular locations. Can functional components of organelles be distinguished from biochemical artefacts or misguided cellular sorting? The clue might reside in compositional changes that follow biological challenges and that can be decoded by machine learning.


Assuntos
Células/metabolismo , Proteínas/metabolismo , Animais , Compartimento Celular , Humanos , Organelas/metabolismo
16.
Proteomics ; 16(3): 393-401, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26510496

RESUMO

Subcellular localization is an important aspect of protein function, but the protein composition of many intracellular compartments is poorly characterized. For example, many nuclear bodies are challenging to isolate biochemically and thus remain inaccessible to proteomics. Here, we explore covariation in proteomics data as an alternative route to subcellular proteomes. Rather than targeting a structure of interest biochemically, we target it by machine learning. This becomes possible by taking data obtained for one organelle and searching it for traces of another organelle. As an extreme example and proof-of-concept we predict mitochondrial proteins based on their covariation in published interphase chromatin data. We detect about ⅓ of the known mitochondrial proteins in our chromatin data, presumably most as contaminants. However, these proteins are not present at random. We show covariation of mitochondrial proteins in chromatin proteomics data. We then exploit this covariation by multiclassifier combinatorial proteomics to define a list of mitochondrial proteins. This list agrees well with different databases on mitochondrial composition. This benchmark test raises the possibility that, in principle, covariation proteomics may also be applicable to structures for which no biochemical isolation procedures are available.


Assuntos
Núcleo Celular/química , Cromatina/química , Mitocôndrias/química , Proteínas Mitocondriais/isolamento & purificação , Proteoma/isolamento & purificação , Proteômica/métodos , Núcleo Celular/metabolismo , Cromatina/metabolismo , Mineração de Dados , Bases de Dados de Proteínas , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Marcação por Isótopo , Células MCF-7 , Aprendizado de Máquina , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteoma/química , Curva ROC
17.
Nat Protoc ; 9(9): 2090-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25101823

RESUMO

During interphase, chromatin hosts fundamental cellular processes, such as gene expression, DNA replication and DNA damage repair. To analyze chromatin on a proteomic scale, we have developed chromatin enrichment for proteomics (ChEP), which is a simple biochemical procedure that enriches interphase chromatin in all its complexity. It enables researchers to take a 'snapshot' of chromatin and to isolate and identify even transiently bound factors. In ChEP, cells are fixed with formaldehyde; subsequently, DNA together with all cross-linked proteins is isolated by centrifugation under denaturing conditions. This approach enables the analysis of global chromatin composition and its changes, which is in contrast with existing chromatin enrichment procedures, which either focus on specific chromatin loci (e.g., affinity purification) or are limited in specificity, such as the analysis of the chromatin pellet (i.e., analysis of all insoluble nuclear material). ChEP takes half a day to complete and requires no specialized laboratory skills or equipment. ChEP enables the characterization of chromatin response to drug treatment or physiological processes. Beyond proteomics, ChEP may preclear chromatin for chromatin immunoprecipitation (ChIP) analyses.


Assuntos
Técnicas de Química Analítica/métodos , Cromatina/química , Proteômica/métodos , Centrifugação , DNA/isolamento & purificação , Formaldeído
18.
EMBO J ; 33(6): 648-64, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24534090

RESUMO

Chromatin proteins mediate replication, regulate expression, and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle, it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead, we propose a new approach that provides a quantitative assessment of a protein's probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of cyclin-dependent kinase (CDK) regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/genética , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Interfase/genética , Proteômica/métodos , Inteligência Artificial , Proteínas de Ciclo Celular/classificação , Centrifugação , Quinases Ciclina-Dependentes/genética , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Ontologia Genética , Humanos , Espectrometria de Massas , Modelos Biológicos , Anotação de Sequência Molecular
19.
Nat Cell Biol ; 16(3): 281-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24561620

RESUMO

To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use nascent chromatin capture (NCC) to profile chromatin proteome dynamics during replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3,995 proteins. The replication machinery and 485 chromatin factors such as CAF-1, DNMT1 and SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, whereas H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment with experimentally derived chromatin probabilities to predict a function in nascent chromatin for 93 uncharacterized proteins, and identify FAM111A as a replication factor required for PCNA loading. Together, this provides an extensive resource to understand genome and epigenome maintenance.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Proteoma/metabolismo , Receptores Virais/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/isolamento & purificação , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Histonas/isolamento & purificação , Histonas/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transporte Proteico , Proteoma/isolamento & purificação , Proteômica , Pontos de Checagem da Fase S do Ciclo Celular
20.
Nat Struct Mol Biol ; 16(9): 923-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19680243

RESUMO

Poly-ADP-ribosylation is a post-translational modification catalyzed by PARP enzymes with roles in transcription and chromatin biology. Here we show that distinct macrodomains, including those of histone macroH2A1.1, are recruited to sites of PARP1 activation induced by laser-generated DNA damage. Chemical PARP1 inhibitors, PARP1 knockdown and mutation of ADP-ribose-binding residues in macroH2A1.1 abrogate macrodomain recruitment. Notably, histone macroH2A1.1 senses PARP1 activation, transiently compacts chromatin, reduces the recruitment of DNA damage factor Ku70-Ku80 and alters gamma-H2AX patterns, whereas the splice variant macroH2A1.2, which is deficient in poly-ADP-ribose binding, does not mediate chromatin rearrangements upon PARP1 activation. The structure of the macroH2A1.1 macrodomain in complex with ADP-ribose establishes a poly-ADP-ribose cap-binding function and reveals conformational changes in the macrodomain upon ligand binding. We thus identify macrodomains as modules that directly sense PARP activation in vivo and establish macroH2A histones as dynamic regulators of chromatin plasticity.


Assuntos
Cromatina , Histonas/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Motivos de Aminoácidos , Dano ao DNA , Ativação Enzimática , Células HeLa , Histonas/química , Humanos , Modelos Moleculares , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/química , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Processamento Pós-Transcricional do RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...