Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev E ; 103(2-1): 022112, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33735964

RESUMO

We present a thermodynamically consistent model of a ternary fluid interacting with elastic membranes. Following a free-energy modeling approach for the fluid phases, we derive the governing equations for the dynamics of the ternary fluid flow and membranes. We also provide the numerical framework for simulating such fluid-structure interaction problems. It is based on the lattice Boltzmann method for the ternary fluid (Eulerian description) and a finite difference representation of the membrane (Lagrangian description). The ternary fluid and membrane solvers are coupled through the immersed boundary method. For validation purposes, we consider the relaxation dynamics of a two-dimensional elastic capsule placed at a fluid-fluid interface. The capsule shapes, resulting from the balance of surface tension and elastic forces, are compared with equilibrium numerical solutions obtained by surface evolver. Furthermore, the Galilean invariance of the proposed model is proven. The proposed approach is versatile, allowing for the simulation of a wide range of geometries. To demonstrate this, we address the problem of a capillary bridge formed between two deformable capsules.

2.
Soft Matter ; 15(40): 8147-8155, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31589219

RESUMO

We present a coarse-grained single-site potential for simulating chiral interactions, with adjustable strength, handedness, and preferred twist angle. As an application, we perform basin-hopping global optimisation to predict the favoured geometries for clusters of chiral rods. The morphology phase diagram based upon these predictions has four distinct families, including previously reported structures for potentials that introduce chirality based on shape, such as membranes and helices. The transition between these two configurations reproduces some key features of experimental results for fd bacteriophage. The potential is computationally inexpensive, intuitive, and versatile; we expect it will be useful for large scale simulations of chiral molecules. For chiral particles confined in a cylindrical container we reproduce the behaviour observed for fusilli pasta in a jar. Hence this chiropole potential has the capability to provide insight into structures on both macroscopic and molecular length scales.

3.
Sci Adv ; 5(6): eaav7328, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31501770

RESUMO

Superomniphobic textures are at the frontier of surface design for vast arrays of applications. Despite recent substantial advances in fabrication methods for reentrant and doubly reentrant microstructures, design optimization remains a major challenge. We overcome this in two stages. First, we develop readily generalizable computational methods to systematically survey three key wetting properties: contact angle hysteresis, critical pressure, and minimum energy wetting barrier. For each, we uncover multiple competing mechanisms, leading to the development of quantitative models and correction of inaccurate assumptions in prevailing models. Second, we combine these analyses simultaneously, demonstrating the power of this strategy by optimizing structures that are designed to overcome challenges in two emerging applications: membrane distillation and digital microfluidics. As the wetting properties are antagonistically coupled, this multifaceted approach is essential for optimal design. When large surveys are impractical, we show that genetic algorithms enable efficient optimization, offering speedups of up to 10,000 times.

4.
Phys Rev Lett ; 120(23): 234501, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932686

RESUMO

A thermodynamically consistent free energy model for fluid flows comprised of one gas and two liquid components is presented and implemented using the entropic lattice Boltzmann scheme. The model allows a high density ratio, up to the order of O(10^{3}), between the liquid and gas phases, and a broad range of surface tension ratios, covering partial wetting states where Neumann triangles are formed, and full wetting states where complete encapsulation of one of the fluid components is observed. We further demonstrate that we can capture the bouncing, adhesive, and insertive regimes for the binary collisions between immiscible droplets suspended in air. Our approach opens up a vast range of multiphase flow applications involving one gas and several liquid components.

5.
J Phys Condens Matter ; 29(8): 084001, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28092626

RESUMO

The fundamental impacts of surface geometry on the stability of wetting states, and the transitions between them are elucidated for square posts and reentrant structures in three dimensions. We identify three principal outcomes of particular importance for future surface design of liquid-repellent surfaces. Firstly, we demonstrate and quantify how capillary condensation and vapour cavitation affect wetting state stabilities. At high contact angles, cavitation is enhanced about wide, closely-spaced square posts, leading to the existence of suspended states without an associated collapsed state. At low contact angles, narrow reentrant pillars suppress condensation and enable the suspension of even highly wetting liquids. Secondly, two distinct collapse mechanisms are observed for 3D reentrant geometries, base contact and pillar contact, which are operative at different pillar heights. As well as morphological differences in the interface of the penetrating liquid, each mechanism is affected differently by changes in the contact angle with the solid. Finally, for highly-wetting liquids, condensates are shown to critically modify the transition pathways in both the base contact and pillar contact modes.

6.
Phys Rev Lett ; 108(12): 126102, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540599

RESUMO

Motivated by unexpected morphologies of the emerging liquid phase (channels, bulges, droplets) at the edge of thin, melting alkane terraces, we propose a new heterogeneous nucleation pathway. The competition between bulk and interfacial energies and the boundary conditions determine the growth and shape of the liquid phase at the edge of the solid alkane terraces. Calculations and experiments reveal a "precritical" shape transition (channel-to-bulges) of the liquid before reaching its critical volume along a putative shape-conserving path. Bulk liquid emerges from the new shape, and, depending on the degree of supersaturation, the new pathway may have two, one, or zero energy barriers. The findings are broadly relevant for many heterogeneous nucleation processes because the novel pathway is induced by common, widespread surface topologies (scratches, steps, etc.).

7.
Faraday Discuss ; 146: 153-65; discussion 195-215, 395-403, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21043420

RESUMO

We investigate the dynamics of micron-scale drops pushed across a hydrophobic or superhydrophobic surface. The velocity profile across the drop varies from quadratic to linear with increasing height, indicating a crossover from a sliding to a rolling motion. We identify a mesoscopic slip capillary number which depends only on the motion of the contact line and the shape of the drop, and show that the angular velocity of the rolling increases with increasing viscosity. For drops on superhydrophobic surfaces we argue that a tank treading advance from post to post replaces the diffusive relaxation that allows the contact line to move on smooth surfaces. Hence drops move on superhydrophobic surfaces more quickly than on smooth geometries.

8.
J Phys Condens Matter ; 21(46): 464125, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21715889

RESUMO

We present and interpret simulation results showing how a fluid moves on a hydrophilic substrate patterned by a square array of triangular posts. We demonstrate that the shape of the posts leads to anisotropic spreading, and discuss how this is influenced by the different ways in which the posts can pin the advancing front.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(5 Pt 2): 056709, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19113239

RESUMO

We show that, when a single relaxation time lattice Boltzmann algorithm is used to solve the hydrodynamic equations of a binary fluid for which the two components have different viscosities, strong spurious velocities in the steady state lead to incorrect results for the equilibrium contact angle. We identify the origins of these spurious currents and demonstrate how the results can be greatly improved by using a lattice Boltzmann method based on a multiple-relaxation-time algorithm. By considering capillary filling we describe the dependence of the advancing contact angle on the interface velocity.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(6 Pt 2): 067301, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18643402

RESUMO

We show how the capillary filling of microchannels is affected by posts or ridges on the sides of the channels. Ridges perpendicular to the flow direction introduce contact line pinning, which slows, or sometimes prevents, filling, whereas ridges parallel to the flow provide extra surface that may enhance filling. Patterning the microchannel surface with square posts has little effect on the ability of a channel to fill for equilibrium contact angle theta_{e} less than approximately 30 degrees . For theta_{e} greater than approximately 60 degrees , however, even a small number of posts can pin the advancing liquid front.

11.
Langmuir ; 24(14): 7299-308, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18547090

RESUMO

The spreading of liquid drops on surfaces corrugated with micrometer-scale parallel grooves is studied both experimentally and numerically. Because of the surface patterning, the typical final drop shape is no longer spherical. The elongation direction can be either parallel or perpendicular to the direction of the grooves, depending on the initial drop conditions. We interpret this result as a consequence of both the anisotropy of the contact line movement over the surface and the difference in the motion of the advancing and receding contact lines. Parallel to the grooves, we find little hysteresis due to the surface patterning and that the average contact angle approximately conforms to Wenzel's law as long as the drop radius is much larger than the typical length scale of the grooves. Perpendicular to the grooves, the contact line can be pinned at the edges of the ridges, leading to large contact angle hysteresis.


Assuntos
Modelos Químicos , Anisotropia , Simulação por Computador , Propriedades de Superfície , Água/química
12.
Langmuir ; 23(11): 6019-32, 2007 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-17451253

RESUMO

We investigate contact angle hysteresis on chemically patterned and superhydrophobic surfaces, as the drop volume is quasistatically increased and decreased. We consider both two (cylindrical drops) and three (spherical drops) dimensions using analytical and numerical approaches to minimize the free energy of the drop. In two dimensions, we find, in agreement with other authors, a slip, jump, stick motion of the contact line. In three dimensions, this behavior persists, but the position and magnitude of the contact line jumps are sensitive to the details of the surface patterning. In two dimensions, we identify analytically the advancing and receding contact angles on the different surfaces, and we use numerical insights to argue that these provide bounds for the three-dimensional cases. We present explicit simulations to show that a simple average over the disorder is not sufficient to predict the details of the contact angle hysteresis and to support an explanation for the low contact angle hysteresis of suspended drops on superhydrophobic surfaces.

13.
Langmuir ; 23(2): 956-9, 2007 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17209658

RESUMO

We explore numerically the feasibility of using chemical patterning to control the size and polydispersity of micrometer-scale drops. The simulations suggest that it is possible to sort drops by size or wetting properties by using an array of hydrophilic stripes of different widths. We also demonstrate that monodisperse drops can be generated by exploiting the pinning of a drop on a hydrophilic stripe. Our results follow from using a lattice Boltzmann algorithm to solve the hydrodynamic equations of motion of the drops and demonstrate the applicability of this approach as a design tool for micofluidic devices with chemically patterned surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...