Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vasc Res ; 42(6): 483-91, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16155364

RESUMO

BACKGROUND: Phospholemman (PLM) is an abundant phosphoprotein in the plasma membrane of cardiac, skeletal and smooth muscle. It is a member of the FXYD family of proteins that bind to and regulate the Na,K-ATPase. Protein kinase A (PKA) is known to phosphorylate PLM on serine 68 (S68), although the functional effect of S68 PLM phosphorylation is unclear. We therefore evaluated S68 PLM phosphorylation in swine carotid arteries. METHODS: Two anti-PLM antibodies, one to S68 phosphorylated PLM and one to unphosphorylated PLM, were made to PLM peptides in rabbits and tested with purified PLM and PKA-treated PLM. Swine carotid arteries were mounted isometrically, contracted, relaxed with forskolin and then homogenized. Proteins were separated on SDS gels and the intensity of immunoreactivity to the two PLM antibodies determined on immunoblots. RESULTS: The antipeptide antibody 'C2' primarily reacted with unphosphorylated PLM, and the antipeptide antibody 'CP68' detected S68 PLM phosphorylation. Histamine stimulation of intact swine carotid artery induced a contraction, increased the CP68 PLM antibody signal and reduced the C2 PLM antibody signal. High extracellular [K(+)] depolarization induced a contraction without altering the C2 or CP68 PLM signal. Forskolin-induced relaxation of histamine or extracellular [K(+)] contracted arteries correlated with an increased CP68 signal. Nitroglycerin-induced relaxation was not associated with changes in the C2 or CP68 PLM signal. CONCLUSIONS: These data suggest that a contractile agonist increased S68 PLM phosphorylation. Agents that increase [cAMP], but not agents that increase [cGMP], increased S68 PLM phosphorylation. S68 PLM phosphorylation may be involved in cAMP-dependent regulation of smooth muscle force.


Assuntos
Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/fisiologia , Colforsina/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Vasodilatação/fisiologia , Animais , AMP Cíclico/metabolismo , Membranas Intracelulares/metabolismo , Músculo Liso Vascular/metabolismo , Concentração Osmolar , Fosforilação , Serina , Sódio/metabolismo , Suínos
2.
Circ Res ; 97(3): 252-9, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-16002746

RESUMO

Cardiac sympathetic stimulation activates beta-adrenergic (beta-AR) receptors and protein kinase A (PKA) phosphorylation of proteins involved in myocyte Ca regulation. The Na/K-ATPase (NKA) is essential in regulating intracellular [Na] ([Na]i), which in turn affects [Ca]i via Na/Ca exchange. However, how PKA modifies NKA function is unknown. Phospholemman (PLM), a member of the FXYD family of proteins that interact with NKA in various tissues, is a major PKA substrate in heart. Here we tested the hypothesis that PLM phosphorylation is responsible for the PKA effects on cardiac NKA function using wild-type (WT) and PLM knockout (PLM-KO) mice. We measured NKA-mediated [Na]i decline and current (IPump) to assess beta-AR effects on NKA function in isolated myocytes. In WT myocytes, 1 micromol/L isoproterenol (ISO) increased PLM phosphorylation and stimulated NKA activity mainly by increasing its affinity for internal Na (Km decreased from 18.8+/-1.4 to 13.6+/-1.5 mmol/L), with no significant effect on the maximum pump rate. This led to a significant decrease in resting [Na]i (from 12.5+/-1.8 to 10.5+/-1.4 mmol/L). In PLM-KO mice under control conditions Km (14.2+/-1.5 mmol/L) was lower than in WT, but comparable to that for WT in the presence of ISO. Furthermore, ISO had no significant effect on NKA function in PLM-KO mice. ATPase activity in sarcolemmal vesicles also showed a lower Km(Na) in PLM-KO versus WT (12.9+/-0.9 versus 16.2+/-1.5). Thus, PLM inhibits NKA activity by decreasing its [Na]i affinity, and this inhibitory effect is relieved by PKA activation. We conclude that PLM modulates the NKA function in a manner similar to the way phospholamban affects the related SR Ca-ATPase (inhibition of transport substrate affinity, that is relieved by phosphorylation).


Assuntos
Proteínas de Membrana/fisiologia , Miócitos Cardíacos/metabolismo , Fosfoproteínas/fisiologia , Receptores Adrenérgicos beta/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Animais , Isoproterenol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Sódio/metabolismo
3.
Biochemistry ; 44(21): 7713-24, 2005 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-15909986

RESUMO

Activation of cardiac muscle sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) by beta1-agonists involves cAMP- and PKA-dependent phosphorylation of phospholamban (PLB), which relieves the inhibitory effects of PLB on SERCA2a. To investigate the mechanism of SERCA2a activation, we compared the kinetic properties of SERCA2a expressed with (+) and without (-) PLB in High Five insect cell microsomes to those of SERCA1 and SERCA2a in native skeletal and cardiac muscle SR. Both native SERCA1 and expressed SERCA2a without PLB exhibited high-affinity (10-50 microM) activation of pre-steady-state catalytic site dephosphorylation by ATP, steady-state accumulation of the ADP-sensitive phosphoenzyme (E1P), and a rapid phase of EGTA-induced phosphoenzyme (E2P) hydrolysis. In contrast, SERCA2a in native cardiac SR vesicles and expressed SERCA2a with PLB lacked the high-affinity activation by ATP and the rapid phase of E2P hydrolysis, and exhibited low steady-state levels of E1P. The results indicate that the kinetic differences in Ca2+ transport between skeletal and cardiac SR are due to the presence of phospholamban in cardiac SR, and not due to isoform-dependent differences between SERCA1 and SERCA2a. Therefore, the results are discussed in terms of a model in which PLB interferes with SERCA2a oligomeric interactions, which are important for the mechanism of Ca2+ transport in skeletal muscle SERCA1 [Mahaney, J. E., Thomas, D. D., and Froehlich, J. P. (2004) Biochemistry 43, 4400-4416]. We propose that intermolecular coupling of SERCA2a molecules during catalytic cycling is obligatory for the changes in Ca2+ transport activity that accompany the relief of PLB inhibition of the cardiac SR Ca2+-ATPase.


Assuntos
Proteínas de Ligação ao Cálcio/química , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Músculo Esquelético/enzimologia , Mioblastos Cardíacos/enzimologia , Miocárdio/enzimologia , Retículo Sarcoplasmático/enzimologia , Termodinâmica , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Animais , Anticorpos Monoclonais/química , Cálcio/metabolismo , Radioisótopos de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/imunologia , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Catálise , Linhagem Celular , Cães , Ácido Egtázico/química , Ativação Enzimática , Membranas Intracelulares/enzimologia , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Mariposas , Fosforilação , Conformação Proteica , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
4.
Biochemistry ; 43(27): 8754-65, 2004 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-15236584

RESUMO

We used fluorescence resonance energy transfer (FRET) to detect and quantitate the interaction of the sarcoplasmic reticulum Ca-ATPase (SERCA) with phospholamban (PLB) in membranes. PLB inhibits SERCA only at submicromolar Ca. It has been proposed that relief of inhibition at micromolar Ca is due to dissociation of the inhibitory complex. To test this hypothesis, we co-reconstituted donor-labeled SERCA and acceptor-labeled I40A-PLB (superinhibitory, monomeric PLB mutant) in membranes of defined lipid and protein composition, with full retention of Ca-dependent ATPase activity and inhibitory regulation by PLB. FRET from SERCA to PLB was measured as a function of membrane concentrations of PLB and SERCA, and functional activity was measured on the same samples. The data revealed clearly that the stoichiometry of binding is one PLB per SERCA, and that binding is a strict function of the ratio of total PLB to SERCA in the membrane. We conclude that the dissociation constant of PLB binding to SERCA is far less than physiological PLB membrane concentrations. Binding at low Ca (pCa 6.5), where I40A-PLB inhibits SERCA, was virtually identical to that at high Ca (pCa 5.0), where no inhibition was observed. However, the limiting energy transfer at saturating PLB was less at high Ca, indicating a greater donor-acceptor distance. We conclude that (a) the affinity of PLB for SERCA is so great that PLB is essentially a SERCA subunit under physiological conditions and (b) relief of inhibition at micromolar Ca is due to a structural rearrangement within the SERCA-PLB complex, rather than dissociation.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Retículo Sarcoplasmático/enzimologia , Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , ATPases Transportadoras de Cálcio/química , Membrana Celular/efeitos dos fármacos , Isoleucina/genética , Isoleucina/metabolismo , Mutação/genética , Ligação Proteica/efeitos dos fármacos
6.
Muscle Nerve ; 25(6): 850-7, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12115974

RESUMO

Myotonic muscular dystrophy (DM) is characterized by abnormal skeletal muscle Na channel gating and reduced levels of myotonic dystrophy protein kinase (DMPK). Electrophysiological measurements show that mice deficient in Dmpk have reduced Na currents in muscle. We now find that the Na channel expression level is normal in mouse muscle partially or completely deficient in Dmpk. Reduced current amplitudes are not changed by age or gene dose, and the reduction is not due to changes in macroscopic or microscopic gating kinetics. The mechanism of abnormal membrane excitability in DM may in part be silencing of muscle Na channels due to Dmpk deficiency.


Assuntos
Envelhecimento/metabolismo , Dosagem de Genes , Músculo Esquelético/metabolismo , Distrofia Miotônica/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Canais de Sódio/metabolismo , Animais , Separação Celular , Modelos Animais de Doenças , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Cinética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Músculo Esquelético/citologia , Distrofia Miotônica/genética , Miotonina Proteína Quinase , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/genética , Ensaio Radioligante , Saxitoxina/farmacocinética , Canais de Sódio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...